Historical *Y. pestis* Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics

Highlights

- Three historical *Yersinia pestis* genomes from the second plague pandemic in Europe
- Low genetic diversity of the pathogen during the Black Death
- Indication for link between the Black Death and 19th century plague pandemic lineages
- Connection between post-Black Death outbreaks in Europe supports a local plague focus

Authors

Maria A. Spyrou, Rezeda I. Tukhbatova, Michal Feldman, ..., Alexander Herbig, Kirsten I. Bos, Johannes Krause

Correspondence

herbig@shh.mpg.de (A.H.), bos@shh.mpg.de (K.I.B.), krause@shh.mpg.de (J.K.)

In Brief

Spyrou et al. have sequenced historical *Yersinia pestis* genomes from victims of the Black Death and subsequent outbreaks in Europe. Their data suggest a connection between the Black Death and the modern-day plague pandemic as well as the persistence of plague in Europe between the 14th and 18th centuries.
Historical *Y. pestis* Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics

Maria A. Spyrou,1 Rezeda I. Tukhbatova,2,3 Michal Feldman,1 Joanna Drath,4 Sacha Kacki,5 Julia Beltrán de Heredia,6 Susanne Arnold,7 Aïrat G. Sittikov,2,3 Dominique Castex,4 Joachim Wahl,4,8 Ilgiz R. Gazimzyanov,3 Danis K. Nurgaliev,9 Alexander Herbig,1,* Kirsten I. Bos,1,* and Johannes Krause1,4,*

1Max Planck Institute for the Science of Human History, Jena 07743, Germany
2Laboratory of Paleoanthropology & Paleogenetics, Kazan Federal University, Kazan 420008, Russian Federation
3Institute of Archaeology named after A. Kh. Khalikov, Tatarstan Academy of Sciences, Kazan 420012, Russian Federation
4Department of Archeological Sciences, University of Tuebingen, Tuebingen 72070, Germany
5PACEA, CNRS Institute, Université de Bordeaux, Pessac 33615, France
6Museu de Historia de Barcelona, Barcelona 08002, Spain
7State Office for Cultural Heritage Management Baden-Württemberg, Esslingen 73728, Germany
8State Office for Cultural Heritage Management Baden-Württemberg, Osteology, Konstanz 78467, Germany
9Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan 420008, Russian Federation
*Correspondence: herbig@shh.mpg.de (A.H.), bos@shh.mpg.de (K.I.B.), krause@shh.mpg.de (J.K.)
http://dx.doi.org/10.1016/j.chom.2016.05.012

SUMMARY

Ancient DNA analysis has revealed an involvement of the bacterial pathogen *Yersinia pestis* in several historical pandemics, including the second plague pandemic (Europe, mid-14th century Black Death until the mid-18th century AD). Here we present reconstructed *Y. pestis* genomes from plague victims of the Black Death and two subsequent historical outbreaks spanning Europe and its vicinity, namely Barcelona, Spain (1300–1420 cal AD), Bolgar City, Russia (1362–1400 AD), and Ellwangen, Germany (1485–1627 cal AD). Our results provide support for (1) a single entry of *Y. pestis* in Europe during the Black Death, (2) a wave of plague that traveled toward Asia to later become the source population for contemporary worldwide epidemics, and (3) the presence of an historical European plague focus involved in post-Black Death outbreaks that is now likely extinct.

INTRODUCTION

Yersinia pestis evolved from the closely related zoonotic enterobacterium *Y. pseudotuberculosis* (Achtman et al., 1999) to become one of the most virulent pathogens known to humans. Its recent identification in ancient human material from Altai, Siberia suggests it caused human infections as early as 5,000 years ago, though its ability for flea-borne transmission leading to bubonic disease might have been absent in these older, divergent lineages (Rasmussen et al., 2015). To our knowledge, bubonic plague, and presumably also the pneumonic and septicemic forms, have been the likely culprit of three major pandemics, namely the Plague of Justinian (Eastern Roman Empire, 6th and 8th centuries AD), the second-wave plague pandemic (Europe, mid-14th century Black Death until the mid-18th century AD), and the third plague pandemic that started during the late 19th century in China. Differences in mortality rate and epidemiology of the three pandemics initiated controversy over whether they shared a common etiologic agent (Cohn, 2008). In recent years, however, ancient DNA (aDNA) has confirmed a *Y. pestis* involvement in both historical pandemics (Bos et al., 2011; Haensch et al., 2010; Wagner et al., 2014).

The Black Death claimed up to 50% of the European population between 1347 and 1353 (Benedictow, 2004). The disease is thought to have arisen from plague foci in East Asia and to have spread into Europe via trade routes (Morelli et al., 2010). Its origin, however, is still contentious due to a lack of convincing archeological or documentary evidence from the early 14th century in East Asia (Sussman, 2011). Ancient *Y. pestis* genomes obtained from medieval victims have indicated the presence of a radiation event immediately preceding the Black Death that gave rise to most of the strain diversity circulating in the world today (Bos et al., 2011; Cui et al., 2013). Based on the relationship of ancient European and modern genomes, it was recently suggested that a wave of plague might have traveled from Europe toward Asia after the Black Death, eventually settling in China and later giving rise to the third pandemic (Wagner et al., 2014). Genomes from its purported route are, however, missing in the discussions, and are needed to add legitimacy to the model.

After the Black Death, plague continued to strike Europe for another four centuries through subsequent outbreaks that ceased at the end of the 18th century (Benedictow, 2004). The reasons for its sudden disappearance in Europe are unknown. Sylvatic plague foci have a nearly worldwide presence today, but are absent in Europe (Gage and Kosoy, 2005; Tikhomirov, 1999). The question of whether the recurrent European plague outbreaks of the 14th to 18th centuries were the result of multiple reintroductions of plague into Europe, or rather were attributed to now-extinct European plague foci, is still being explored. Previous studies that draw upon aDNA and climatic data favor the former hypothesis. Through a SNP-based PCR approach,
purportedly distinct plague lineages were identified in different areas of Europe during the 14th century and were thought to have entered via different pulses (Haensch et al., 2010). In addition, plague outbreaks documented in some of the main Mediterranean ports were found to coincide with extreme climate fluctuations in Central Asia, suggesting that recurrent maritime imports of plague from Asia might have been responsible for post-Black Death plague outbreaks (Schmid et al., 2015). By contrast, others have suggested a long-term persistence of plague in Europe (Seifert et al., 2016). Using a PCR SNP-typing approach of putative plague material from Southern and Northeastern Germany, identical Y. pestis SNP profiles were identified in strains circulating within Europe between the Black Death and 17th century AD (Seifert et al., 2016), implying a single source population for the European plagues of that time period. A further genome-wide analysis of Y. pestis strains from the Great Plague of Marseille (1720–1722) has identified a previously uncharacterized lineage of Y. pestis that descends from a strain present during the Black Death (Bos et al., 2016). While the lineage is considered to represent an historical plague focus potentially responsible for post-Black Death European outbreaks (Bos et al., 2016), the use of material from a highly operational Mediterranean center that linked Western Europe with the East (Signoli et al., 1998) makes identification of the disease source elusive.

Here, we aim to address three outstanding questions regarding Y. pestis history. First, we investigate the possibility of disease entry via multiple pulses during the Black Death by comparing the genotype of a strain from the pandemic’s early phase to those circulating in other areas later in the pandemic. Material from Barcelona, Spain, one of the Mediterranean cities through which plague entered southern continental Europe, is compared to Black Death genomes from London. Second, we evaluate the likelihood of the proposed eastward migration of strains from Europe to Asia after the Black Death through the analysis of human remains from a 14th century plague burial in the Volga region of Russia. Third, we take a further step toward understanding the relationship of post-Black Death outbreaks in Europe and evaluate the likelihood of a local reservoir. For this, we investigate a 16th century plague outbreak in Southwestern Germany and compare it to both a London outbreak that occurred soon after the Black Death and to the Great Plague of Marseille, France in 1722. Following the success of previous genomic investigations of ancient bacterial disease (Bos et al., 2011, 2014, 2016; Schuenemann et al., 2011, 2013; Wagner et al., 2014), we employ similar methods of DNA capture and high-throughput sequencing to retrieve the genomes of three historical Y. pestis strains. Our results suggest (1) limited Y. pestis diversity during the early phase of the Black Death, and likely a single entry into Europe; (2) a wave of plague that traveled eastward after the Black Death and later gave rise to the 19th century pandemic; and (3) an involvement of the same plague lineage in two post-Black Death European epidemics that are 200 years apart.

RESULTS

Archaeological Sites and Dating

Samples were collected from a mass grave in Barcelona, Spain, a single grave in Bolgar City in Russia, and a mass grave in Ellwangen, Germany (Figure 1 and Supplemental Experimental Procedures). Aside from the Bolgar City site that was dated to the second half of the 14th century using coin artifacts known to have been minted after 1362 (Supplemental Experimental Procedures and Figure S1), archaeological dates were not available. To estimate or confirm the historical period during which each of the outbreaks occurred, radiocarbon dates from bone fragments and tooth roots were obtained. The dates yielded were 1300–1420 cal AD for Barcelona, 1298–1388 cal AD for Bolgar City, and 1486–1627 cal AD for Ellwangen (Figure 1 and Table S1).

Screening for Y. pestis

A total of 223 DNA extracts from teeth of 178 individuals were evaluated for the presence of Y. pestis DNA through a
species-specific quantitative PCR (qPCR) assay targeting the plasminogen activator (pla) gene located on the PCP1 plasmid (Schuenemann et al., 2011) (Supplemental Experimental Procedures). Results indicated 53 potentially positive DNA extracts stemming from 32 individuals. All extraction and PCR blanks were free of amplification products. Amplification products were not sequenced, as samples from potentially positive individuals were directly turned into double-stranded next-generation sequencing libraries and were used for whole-genome array capture. After capture, three individuals had sufficient Y. pestis DNA for genome-level analysis. These were tooth specimens 3031 from Barcelona, 2370 from Bolgar City, and Ellwangen (Figure 1, Table S1 and Supplemental Experimental Procedures).

Y. pestis Genome-Capture Results

Whole-genome array capture was performed using the chromosome of *Y. pseudotuberculosis* (Chain et al., 2004) and the *Y. pestis* plasmids pMT1 and pCD1 as template for probe design (Supplemental Experimental Procedures). Array captures produced average genomic coverage of 10.3-fold for Barcelona 3031, 19.3-fold for Bolgar City 2370, and 4.9-fold for Ellwangen 549_O (Table S1 and Table S2). Owing to its low coverage, data presented for sample 549_O are from a pool of two independent libraries produced from two teeth of the same individual (Table S1 and Table S2).

Phylogenetic Analysis of Historical Y. pestis Genomes

Our ancient genomes were then added to a *Y. pestis* phylogeny constructed from previously published genomes including 130 modern genomes (Cui et al., 2013), 7 historical genomes (Bos et al., 2011, 2016), and 11 newly available modern *Y. pestis* strains from the Former Soviet Union (Zhgenti et al., 2015) (Table S3). Our maximum parsimony tree revealed that the modern Former Soviet Union genomes group with what was previously thought to be diversity restricted in China, specifically lineage 0.ANT3 (Cui et al., 2013). They also add further diversity to the 2.MED1 lineage and, importantly, to the 0.PE2 lineage, which is the second deepest branch in the *Y. pestis* phylogeny (Figure 2A, Figure S2, and Table S3). This reveals a more extensive *Y. pestis* diversity outside of China than was previously thought.
All three reconstructed historical genomes group in Branch 1, and all possess diagnostic SNP positions here referred to as “p1” and “p2” (Table 1), which were previously identified in historical Y. pestis genomes from the Black Death (Bos et al., 2011) (Figure 2B, Table 1). The positioning of the strains reported here in the phylogeny confirms their authenticity as ancient. To date, all Y. pestis genomes isolated from the historic 2nd plague pandemic group in Branch 1.

We find no detectable differences between our Black Death strain from Barcelona and three previously genotyped strains from London 1348–1350 (Bos et al., 2011). The Bolgar City strain, however, contains additional differences in four positions compared to Black Death isolates: two of these are shared with London individual 6330 (positions p3 and p4, Figure 2B and Table 1), one is shared with all modern Branch 1 strains (p6), and one is unique to this individual (p7, Figure 2B). Additionally, the Ellwangen strain groups in a sub-branch of Branch 1, together with five strains previously typed from the Great Plague of Marseille (L’Observance), 1720–1722 (Figure 2B) (Bos et al., 2016). Our analysis reveals 20 positions shared with the strains from L’Observance and three unique SNPs (Table S4). That the Ellwangen strain is ancestral to the Observance strains comes as no surprise given the older age of the samples (Figure 2B). This “Ellwangen-Observance” lineage originates from Black Death strains currently represented by the isolates from London and Barcelona. Like the strain from Marseille, that from Ellwangen does not share additional derived positions with other ancient or modern strains (Figure 2B), as no modern descendants have as yet been identified in this sub-branch.

DISCUSSION

Our genomes from Barcelona, Bolgar City, and Ellwangen group on the same phylogenetic branch (Branch 1), adding further legitimacy to the notion that the Black Death and subsequent plague outbreaks in Europe, as well as the worldwide third pandemic, were caused by the same Y. pestis lineage (Figure 2, Figure S2, and Figure 3). Further analysis of ancient and modern strains of this branch could reveal important clues to explain why this particular lineage was involved in both the second and third pandemic.

Our analysis reveals that the strain from Barcelona is identical to a previously sequenced Black Death Y. pestis strain from London (1348–1350). Barcelona was one of the main entry points for the Black Death into Europe, with historical reports suggesting the disease first entered there in the spring of 1348 (Gottfried, 1983). In London, the earliest reports of the illness are from autumn 1348 (Benedictow, 2004). This indicates a contemporary presence of the same strain in both southern and northern Europe, supporting the notion of a single wave entry, with low genetic diversity in the pathogen. Historical sources indicate that plague first came into view in 1347, with outbreaks in the southern islands of Crete, Sicily, and Sardinia, followed by entry into mainland Europe via the heavily trafficked ports of Genoa and Marseille. Samples from these locations and those further afield from its purported source population in East Asia may provide us with relevant details regarding the microevolution of a highly virulent pathogen at the beginning of a mass pandemic.

All three reconstructed historical genomes group in Branch 1, and all possess diagnostic SNP positions here referred to as “p1” and “p2” (Table 1), which were previously identified in historical Y. pestis genomes from the Black Death (Bos et al., 2011) (Figure 2B, Table 1). The positioning of the strains reported here in the phylogeny confirms their authenticity as ancient. To date, all Y. pestis genomes isolated from the historic 2nd plague pandemic group in Branch 1.

We find no detectable differences between our Black Death strain from Barcelona and three previously genotyped strains from London 1348–1350 (Bos et al., 2011). The Bolgar City strain, however, contains additional differences in four positions compared to Black Death isolates: two of these are shared with London individual 6330 (positions p3 and p4, Figure 2B and Table 1), one is shared with all modern Branch 1 strains (p6), and one is unique to this individual (p7, Figure 2B). Additionally, the Ellwangen strain groups in a sub-branch of Branch 1, together with five strains previously typed from the Great Plague of Marseille (L’Observance), 1720–1722 (Figure 2B) (Bos et al., 2016). Our analysis reveals 20 positions shared with the strains from L’Observance and three unique SNPs (Table S4). That the Ellwangen strain is ancestral to the Observance strains comes as no surprise given the older age of the samples (Figure 2B). This “Ellwangen-Observance” lineage originates from Black Death strains currently represented by the isolates from London and Barcelona. Like the strain from Marseille, that from Ellwangen does not share additional derived positions with other ancient or modern strains (Figure 2B), as no modern descendants have as yet been identified in this sub-branch.

DISCUSSION

Our genomes from Barcelona, Bolgar City, and Ellwangen group on the same phylogenetic branch (Branch 1), adding further legitimacy to the notion that the Black Death and subsequent plague outbreaks in Europe, as well as the worldwide third pandemic, were caused by the same Y. pestis lineage (Figure 2, Figure S2, and Figure 3). Further analysis of ancient and modern strains of this branch could reveal important clues to explain why this particular lineage was involved in both the second and third pandemic.

Our analysis reveals that the strain from Barcelona is identical to a previously sequenced Black Death Y. pestis strain from London (1348–1350). Barcelona was one of the main entry points for the Black Death into Europe, with historical reports suggesting the disease first entered there in the spring of 1348 (Gottfried, 1983). In London, the earliest reports of the illness are from autumn 1348 (Benedictow, 2004). This indicates a contemporary presence of the same strain in both southern and northern Europe, supporting the notion of a single wave entry, with low genetic diversity in the pathogen. Historical sources indicate that plague first came into view in 1347, with outbreaks in the southern islands of Crete, Sicily, and Sardinia, followed by entry into mainland Europe via the heavily trafficked ports of Genoa and Marseille. Samples from these locations and those further afield from its purported source population in East Asia may provide us with relevant details regarding the microevolution of a highly virulent pathogen at the beginning of a mass pandemic.
westward pulses of plague from an Asian focus throughout the second pandemic are thought possible (Schmid et al., 2015). We find this model for the second pandemic difficult to reconcile with our current data. Although it has been previously shown that Y. pestis has an extremely variable substitution rate (Cui et al., 2013), our Russian strain has only two additional derived substitutions (p6, p7, Figure 2) compared to London Y. pestis genome 6330 (Bos et al., 2011), dated to 1350–1400. This close genetic similarity suggests that our Russian strain represents a new outbreak subsequent to that which occurred in London after the Black Death. The alternative “Asian origin” model would require a minimum of four separate lineages exiting together from the same focus to account for the level of diversity observed in Europe during the Black Death and its aftermath, i.e., (1) London/Barcelona, (2) London 6330, (3) Bolgar City, and (4) Sub-Saharan Africa. We regard the likelihood of such similar strains leaving Asia in a short time frame to be low, but acknowledge it would be possible if (1) their ancestral focus was in a location particularly conducive to westward travel, or (2) there exists a biological reason for their greater ease in rapid long-distance travel. While the above scenarios could equally explain the sole involvement of Branch 1 in contemporary plague outbreaks outside of China, we regard a single exit followed by an eastward travel as a more parsimonious explanation for the current data.

Consensus has not yet been reached regarding the role played by the Russian region in the introduction of plague into Europe during the Black Death (Alexander, 1980; Benedictow, 2004; McNeill, 1998; Norris, 1977; Schmid et al., 2015). Drawing
upon historical and climatic data, scholars have adopted a “proximal origin” theory, which states that the Black Death erupted from plague foci in the Caucasus and neighboring areas (Alexander, 1980; Benedictow, 2004; Norris, 1977; Sussman, 2011; Varlik, 2015). Molecular investigations of the plague bacillus, however, have pointed to China as both the birthplace of Y. pestis itself and the origin of the Black Death (Cui et al., 2013; Morelli et al., 2010). This is difficult to reconcile with the strong East Asian sampling bias of the available data, coupled with the fact that the second most basal Y. pestis lineage sampled thus far stems from a rodent focus in the Former Soviet Union (Cui et al., 2013) (Figure 3). In our current investigation, we attempted to partially overcome this limitation by integrating recently sequenced strains from the Caucasus region (Zhgenti et al., 2015) in our Y. pestis phylogeny. To our surprise, these strains grouped with some lineages previously thought to be mostly or entirely restricted to China (Figure 2A). We therefore highlight the need to expand the sampling region of both modern and ancient Y. pestis to establish a more comprehensive understanding of its evolutionary history and modern ecology.

Our plague strain from the German city of Ellwangen is ancestral to those associated with the Great Plague of Marseille (L’Observance, an epidemic that occurred in France some 200 years later (Figure 2B). This branch descends directly from the strain circulating in both London and Barcelona during the Black Death and does not possess the additional Branch 1 positions present in the London 6330 and Bolgar lineages described above. That the Ellwangen genome shares 20 positions with the Marseille strain and has three unique positions (Table S4) suggests the two share a common genetic history and diverged from the same source population in advance of the 16th century Ellwangen outbreak. A previous study has pointed to natural plague foci in Asia as likely sources of the multiple plague outbreaks in Europe following the Black Death (Schmid et al., 2015). An alternative model, however, proposes a local European source for plague, given the high number of documented sporadic epidemics in isolated rural areas throughout the second wave. Alpine rodent species are considered one possible reservoir (Carmichael, 2014). Both models are explored in recent aDNA analyses of post-Black Death European plague material (Bos et al., 2016; Seifert et al., 2016), though at a resolution too low to strongly favor one hypothesis over the other. Based on modern epidemiological data, no known plague foci exist within Europe; however, several foci are suspected to exist in areas along the former Silk Road, the most prolific of which are immediately to the east of the Caspian Sea (Gage and Kosoy, 2005). The geographical location of the city of Ellwangen, and the seemingly restricted outbreak here, however, makes the introduction of disease via trade routes outside of Europe unlikely. We rather view our data as more supportive of a European reservoir for the disease. As only a small rodent focus with limited exposure to a susceptible host species is thought to be theoretically sufficient to initiate a large-scale human plague epidemic (Keeling and Gilligan, 2000), plague’s presence in this proposed European reservoir need not have been large. The Ellwangen-Observance lineage contains no known extant descendants; hence, this focus may no longer exist (Figure 2B), and its extinction may have coincided with the sudden disappearance of plague in Europe. The popular theory of an 18th century domestic rodent replacement of Rattus rattus by Rattus norvegicus (Appleby, 1980) could still carry some traction. The black rat is a well-known harbinger of plague in several locations where Y. pestis infections persist today (Duplantier et al., 2005; Vogler et al., 2011), and though brown Norway rats have a similar susceptibility to plague infection (Anderson et al., 2009), their different ecological niche and comparatively reduced contact with humans in a domestic setting may have slowed the transmission of disease entering from a neighboring sylvatic population.

Our phylogeny is compatible with popular demographic scenarios wherein the Black Death cycled through the Mediterranean (Barcelona), spread to Northern Europe (London), subsequently traveled east into Russia (Bolgar), and eventually made its way into China, its presumed origin and ultimate source of the modern plague pandemic (Figure 3). The most parsimonious interpretation of our data holds that, in the course of its travels, a minimum of one plague lineage was left behind along its route that persisted long enough to later diversify and give rise to at least two subsequent epidemics—one in 16th century Germany and one in 18th century France (Bos et al., 2016). The above proposal, however, is unlikely to explain the full spectrum of Y. pestis diversity and plague epidemics during the notorious so-called “second wave” plague pandemic; a unidirectional dispersal of Y. pestis is unlikely, as multiple factors are sure to have contributed to its spread in humans and other host species. The epidemics in Germany and France, for example, stemmed from only one of possibly several historical plague foci within Europe or its vicinity. Concurrent plague foci harboring strains related to our Bolgar lineage, to the lineage identified in late 14th century London, or potentially others not yet identified may have been responsible for additional second wave plague outbreaks. Currently there is a lack of ancient Y. pestis data from the proposed entry and end points of the Black Death in Europe (Gottfried, 1983). Genetic analyses of putative plague material from these regions would be essential in unraveling additional key features related to the paths traveled by the Black Death and the legacy it left behind.

EXPERIMENTAL PROCEDURES

Array Design and Captures

A one-million-feature Agilent microarray was designed with an in-house probe design software using the chromosome of Yersinia pseudotuberculosis (NCBI: NC_006155) (Chain et al., 2004), as well as the Y. pestis CO92 plasmids pMT1 (NCBI: NC_003134) and pCD1 (NCBI: NC_003131). DNA extracts from plas-positive samples (Supplemental Experimental Procedures) were turned into double-stranded DNA libraries as described before (Meyer and Kircher, 2010). Serial hybridization-based array capture was performed using previously established methods (Hodges et al., 2009) (Supplemental Experimental Procedures).

High-Throughput Sequencing and Read Processing

Following high-throughput sequencing on Illumina platforms, all pre-processing mapping and genotyping steps were performed using the automated pipeline EAGER (Peltzer et al., 2016). For SNP filtering, the MultiVCFAnalyzer custom java program was applied to all vcf files to comparatively filter all detected SNPs (Supplemental Experimental Procedures).

Phylogenetic Reconstruction

A SNP table was used as input for phylogenetic reconstruction. Phylogenetic trees were generated using the Maximum Parsimony (MP) and Maximum Likelihood (ML) methods available in MEGA6.06 (Tamura et al., 2013),...
deselecting alignment columns with more than 5% missing data. The three newly reconstructed Y. pestis strains from Barcelona, Bolgar City, and Ellwangen were analyzed alongside seven previously sequenced historical strains from the second plague pandemic (Bos et al., 2011, 2016) and 141 published modern Y. pestis strains (Cui et al., 2013; Zhgenti et al., 2015). A Y. pseudotuberculosis strain (IP32953) (Chain et al., 2004) was used as outgroup for rooting the tree, and all its derived SNPs were removed to scale branch lengths (Supplemental Experimental Procedures).

ACCESSION NUMBERS

Raw sequencing reads produced for this study have been deposited at the European Nucleotide Archive (ENA) under accession number ENA: PRJEB13664.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, two figures, and four tables and can be found with this article online at http://dx.doi.org/10.1016/j.chom.2016.05.012.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We are grateful to Cosimo Posth, Marcel Keller, and all other members of the Department of Archaeogenetics of the Max Planck Institute for the Science of Human History for their suggestions, as well as the three anonymous reviewers for their comments. We thank Annette GüNZel for graphical support. We thank Rainer Weiss for facilitating excavations in Ellwangen and for providing access to photographic material. We acknowledge the following sources of funding: European Research Council starting grant APGREID (to J.K.) and Social Sciences and Humanities Research Council of Canada postdoctoral fellowship grant 756-2011-501 (to K.I.B.), the Maison des Sciences de l’Homme d’Aquitaine (projet Région Aquitaine) and the French Research National Agency (program of investments for the future, grant ANR-10-LABX-52 (to D.C.), the Russian Government Program of Competitive Growth of Kazan Federal University and the Regional Foundation of Revival of Historical and Cultural Monuments of the Republic of Tatarstan (to R.I.T., I.R.G., A.G.S., and D.K.N.). Part of the data storage and analysis was performed on the computational resource bwGRID Cluster Tübingen funded by the Ministry of Science, Research and the Arts Baden-Württemberg, and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC.

Received: March 4, 2016
Revised: April 23, 2016
Accepted: May 13, 2016
Published: June 8, 2016

REFERENCES

