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Neuroprotection by scorpion venom heat resistant peptide in 
6-hydroxydopamine rat model of early-stage Parkinson’s disease
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Abstract: Neuroprotective effect of scorpion venom on Parkinson’s disease (PD) has already been reported. The present study was 
aimed to investigate whether scorpion venom heat resistant peptide (SVHRP) could attenuate ultrastructural abnormalities in mito-
chondria and oxidative stress in midbrain neurons of early-stage PD model. The early-stage PD model was established by injecting 
6-hydroxydopamine (6-OHDA) (20 μg/3 μL normal saline with 0.1% ascorbic acid) into the striatum of Sprague Dawley (SD) rats 
unilaterally. The rats were intraperitoneally administered with SVHRP (0.05 mg/kg per day) or vehicle (saline) for 1 week. Two weeks 
after 6-OHDA treatment, the rats received behavior tests for validation of model. Three weeks after 6-OHDA injection, the immunore-
activity of dopaminergic neurons were detected by immunohistochemistry staining, and the ultrastructure of neuronal mitochondria in 
midbrain was observed by electron microscope. In the meantime, the activities of monoamine oxidase-B (MAO-B), superoxide 
dismutase (SOD) and content of malondialdehyde (MDA) in the mitochondria of the midbrain neurons, as well as the inhibitory ability of 
hydroxyl free radical and the antioxidant ability in the serum, were measured by corresponding kits. The results showed that 6-OHDA 
reduced the optical density of dopaminergic neurons, induced damage of mitochondrial ultrastructure of midbrain neurons, decreased 
SOD activity, increased MAO-B activity and MDA content, and reduced the antioxidant ability of the serum. SVHRP significantly 
reversed the previous harmful effects of 6-OHDA in early-stage PD model. These findings indicate that SVHRP may contribute to 
neuroprotection by preventing biochemical and ultrastructure damage changes which occur during early-stage PD.
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蝎毒耐热肽对6羟多巴早期帕金森病大鼠的神经保护作用

殷盛明1,*，赵 丹1，于德钦1，李盛龙1，安 冬1，彭 岩2，徐 红2，孙艺平2，王冬梅2，赵 杰2,*，张万琴2

大连医科大学1生理教研室；2机能实验室，大连 116044

摘  要：本文旨在研究蝎毒耐热肽(SVHRP)是否可以缓解早期帕金森病(Parkinson’s disease, PD)模型中脑神经元线粒体超微结

构异常和氧化应激。将6羟多巴(6-OHDA, 20 μg/3 μL含0.1%抗坏血酸生理盐水)单侧注射到Sprague Dawley (SD)大鼠纹状体制

备早期PD模型，PD大鼠腹腔注射SVHRP或相同体积对照溶液(生理盐水)处理1周。在6-OHDA注射2周后，对大鼠进行行为

学检测；6-OHDA注射3周后，用免疫组织化学法检测多巴胺能神经元的免疫反应活性，用电子显微镜观察中脑神经元线粒

体的超微结构，用试剂盒检测中脑神经元线粒体的单胺氧化酶B活性、超氧化物歧化酶活性和丙二醛含量，并进一步检测血

清抑制羟自由基能力和抗氧化能力。结果显示，早期PD大鼠多巴胺能神经元的光密度相对对照组明显降低，中脑神经元线

粒体超微结构的损伤显著加重，超氧化物歧化酶活性明显下降，单胺氧化酶B活性和丙二醛含量显著升高，血清抑制羟自由

基能力和总的抗氧化能力显著下降。而SVHRP能够明显逆转6-OHDA的上述损伤作用。以上结果提示，SVHRP通过减轻早

期PD的异常氧化应激和超微结构的损伤来发挥神经保护作用。
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Parkinson’s disease (PD) is one of most common neu-
rodegenerative diseases with the progressive neurode-
generation of the nigrostriatal pathway. Numerous factors 
such as mitochondrial dysfunction, inflammation- 
mediated cell injury and reactive oxygen species have 
been implicated in the etiology of PD[1]. Diagnosis of 
PD is based on typical motor symptoms accompanied 
by the signs that more than 60% dopaminergic neurons 
died in the substantial nigra and 20%–30% dopamine 
(DA) left in the striatum[2,3]. Unfortunately, by the time 
of diagnosis, most of the dopaminergic neurons in the 
substantia nigra are dead, which is too late to be cured. 
In the elderly, PD is more common with most cases 
happening after the age of 50, and the inducement of 
PD occurred very early even from neonate[4,5]. More-
over, the early-stage of PD without typical clinical 
symptom proceeds slowly[2], and the most obvious 
symptoms are movement-related, which include rigidity, 
shaking, slowness of movement and so on.

In the late stages of PD, cognitive and behavioral 
problems may appear, with dementia commonly arising 
in the advanced stages of the disease[6,7]. However, the 
mechanism of early-stage PD is still unclear, and the 
related study is limited as it is difficult to collect early 
PD cases without the exact clinical symptoms. Therefore, 
early PD animal and cell models are more ideal to be 
used in research[8,9]. DA axon terminal lesions induced 
by injecting 6-OHDA, the catecholamine selective neu-
rotoxin, into the striatum were used as tools for getting 
selective partial lesions of the nigrostriatal DA system 
in the rat[8], and that model can mimic the nigrostriatal 
pathology in different stages of PD[10]. Multifarious 
neurotoxic mechanisms are implicated in 6-OHDA- 
induced neuronal damage resulting in the development 
of an effective model for PD to test different drugs and 
formulations for their anti-parkinson activity[1,11]. 
L-DOPA (L-3,4-dihydroxyphenylalanine) is used as a 
common drug in the clinical treatment of PD. Unfortu-
nately, there are many serious side effects of chronic 
levodopa administration in the treatment of PD, includ-
ing end-of-dose deterioration of function, on/off oscil-
lations, and so on[12]. Scorpion venoms and their toxins, 
which are composed of plentiful sources of fascinating 
neuropeptides binding with high specificity and affinity 
to multifold ion channels, have been used extensively 
as tools for clearing the pharmacological effects and 
the molecular basis of neurotransmission and electrical 
excitability[13,14]. The Chinese scorpion Buthus martensi 
Karsch belongs to the Buthidae family and is used to 

treat neurological symptoms such as mimetic paralysis 
and incomplete paralysis[15]. Our previous study have 
shown that scorpion venom protects the dopaminergic 
neurons in the substantial nigra and improves the related 
behavior deficits in PD rats and mice[16,17]. The mecha-
nism of those effects are reversing the abnormal 
expression of proenkephaline[18], altering neural nitric 
oxide synthesis[19,20] and inhibiting the immuno-reactivity 
of microglia cells[14]. However, the neuroprotection of 
scorpion venom heat resistant peptide (SVHRP) in early- 
stage PD is not completely clear until now. So in the 
present study, we focused on the point that whether 
SVHRP administration would attenuate ultrastructural 
abnormalities in mitochondria and abnormal expression 
of oxidative stress markers in early-stage PD rats.

1  MATERIALS AND METHODS

1.1  Preparation of early-stage PD animal model
All the experimental procedures were carried out 
according to the Animal Ethics Standards and Regula-
tions for the Administration of Affairs Concerning 
Experimental Animals. Thirty six healthy, male, 
Sprague- Dawley (SD) rats, 6–8 weeks old, weighing 
180–120 g, were got from the Animal Center of Dalian 
Medical University [No. SCXK (Liao) 2002-0002]. 
The rats were randomly divided into three groups: 
control group (n = 12), early PD group (n = 12) and 
SVHRP-treated group (n = 12). Being deeply anaesthe-
tized with 4% chloral hydrate (400 mg/kg, i.p.), the rats 
were fixed on the stereotaxic instrument (Stoelting 
Company, USA), 3.4 mm far from tooth bar. The injec-
tion target location (striatum) was AP = +1.0 mm, R = 
3.0 mm (right beside), H = −4.5 mm (subdural), based 
on George Paxinos & Charles Watson stereo rat’s brain 
localization[21]. The rats in both SVHRP-treated group 
and early PD group received 20 μg of 6-OHDA (Sigma, 
USA) dissolved in vehicle saline (0.1% ascorbic acid in 
physiological saline, 3 μL) by stereotaxic injection into 
striatum at a rate of 1 μL/min. The control group was 
injected with the same volume of vehicle without 
6-OHDA in the same target point. Two hours after the 
6-OHDA injection, the rats in SVHRP-treated group 
and early PD group were given SVHRP (0.05 mg/kg 
per day, i.p.) or vehicle (saline) for 1 week, respectively. 
SVHRP was created by Department of Physiology, 
Dalian Medical University (China Invention Patent: 
ZL01 1 06116.9).
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1.2  Behavioral assessment
All behavioral tests were conducted in a consistent 
manner by the same investigator in terms of technique 
and time of test, and the surroundings were kept quiet. 
Rotational behavior: 2 weeks after lesions, apomor-
phine (Apo, Sigma, 0.5 mg/kg, i.c.) dissolved in 0.4 
mL physiological saline was given to the rat to evoke 
rotational behavior. Thirty minutes of rotational behav-
ior of each rat was recorded. A successful early PD 
model was made only if the rotation of the rat was less 
than 7 r/min. Adjusting step test: An oblique 1.1-metre- 
long wooden plank was prepared to connect a start line 
and the home cage. Before the 6-OHDA lesion, all rats 
were habituated for three successive days. During the 
test, the hind limbs and one forelimb of the rat were 
immobilized when the rats moved slowly across the 
plank with the free forelimbs. Each forelimb was tested 
twice during a test session. The time and the steps taken 
from the starting line to the home cage were recorded. 
All these tests were started from the left side to the 
right side, and each test was repeated twice.
1.3  Immunohistochemistry staining
The rats were anesthetized deeply with 4% chloral 
hydrate (400 mg/kg, i.p.) and then perfused transcardi-
ally respectively with 1% and 4% paraformaldehyde. 
The brain was then placed into 4% paraformaldehyde 
for post-fixation and later submerged in phosphate buf-
fer saline (PBS) containing 20% sucrose overnight at 
4 °C. The brains were cut into 50 μm thick slices on the 
Microtome-Cryostat. The slices were rinsed three times 
in PBS for 10 min, incubated with 1% bovine serum 
albumin for 30 min and with primary antibody against 
tyrosine hydroxylase (TH, Sigma, 1:500) overnight at 
4 °C. The sections were rinsed another three times in 
PBS for 10 min and further processed using biotinylated- 
second antibody (Wuhan Boster company, China, 
1:400) at room temperature for 1.5 h. The sections were 
rinsed for three times in order to incubate with avidin- 
biotin complex A:B:PBS (1:1:400) at room temperature 
for 2 h. Then the sections were detected with diamino-
benzidine. In the control group, PBS was used instead 
of primary antibody.
1.4  Measurement of ultrastructure by the electron 
microscope
The coronal brain slices (50 μm thick) of SD rats from 
each group were fixed with 0.1 mol/L hydrochloric acid 
buffer solution containing 2% paraformaldehyde and 
1.25% glutaraldehyde. The slices were put into 2% 

osmic acid for 1 h for post-fixation, and then were 
embedded by Epon812 plate. The area embedded in the 
tissue was selected through a light microscope. Double 
uranium-lead staining was performed on the ultra-thin 
section (50 nm), and the slices were observed by a 
transmission electron microscope. Two embedded 
blocks were selected to make the ultra-thin section in 
each animal randomly with 2 copper meshes selected. 
The copper mesh with better contrast was observed in 
the electron microscope with the 100 000 magnifica-
tion. The ultrastructure of mitochondria in the lesioned 
side of midbrain was observed.
1.5  Biochemical estimation
After the behavioral tests, the animals were sacrificed 
by cervical decapitation. The brain was removed and 
kept on ice, then the midbrain was separated, blotted on 
filter paper, then weighed and homogenized in cold 
buffer A (250 mmol/L mannitol, 5 mmol/L EDTA, 
5 mmol/L Hepes, 0.1% BSA, pH 7.4). The homoge-
nates were centrifuged at 1 000 r/min for 5 min at 4 °C. 
The supernatant was again centrifuged at 10 000 r/min 
for 10 min at 4 °C. The sedimentation was dissolved in 
5 mL buffer solution A, divided in centrifuge tubes 
containing 20 mL 30% Percoll (225 mmol/L mannitol, 
1 mmol/L EDTA, 25 mmol/L, Hepes, 0.1% BSA, pH 
7.4), and centrifuged at 10 000 r/min for 30 min. The 
brown part at the bottom collected was mitochondria, 
which was used for further estimation of monoamine 
oxidase-B (MAO-B), superoxide dismutase (SOD), and 
malondialdehyde (MDA). The mitochondria were put 
on the ice after adding 50 mol/L PBS (40 times). The 
protein quantity was measured using the Lowry method. 
MAO-B is mainly located in the mitochondria (outer 
membrane of mitochondrial) of the neuron. MAO-B, 
SOD and MDA in the homogenate were estimated by 
the protocols of respective kit (Nanjing Jiancheng Bio-
engineering Institute). Determination of hydroxyl radi-
cal and total antioxidative capacity level in serum: The 
blood was got from the angular vein and centrifuged at 
3 500 r/min for 10 min at 4 °C. The supernatant was 
diluted 20 folds with physiology saline, and 0.2 mL 
serum was selected to determine the capacity in the 
inhibition of the serum hydroxyl radical using Fenton  
reaction and Griess reagent. The total antioxidant 
capacity was measured by ferroin colourimetry in serum.
1.6  Statistics and analysis
All data were expressed as mean ± standard deviation 
(SD). Differences between groups were assessed using 
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ANOVA in SPSS 13.1. Multiple comparisons among 
the groups were performed using SNK method. For all 
comparisons, values of P < 0.05 were considered sig-
nificant statistically.

2  RESULTS

2.1  Behavioral assessment
The rotation of the rats in early PD was less than 7 r/min. 
In adjusting step test, there was no significant differ-
ence in the time and the steps taken from the starting 
line to the home cage between model and control groups.
2.2  Effect of SVHRP on TH-immunoreactivity (IR) 
positive dopaminergic neurons
Figure 1 showed the number and optical density of TH-
IR positive dopaminergic neurons. The results showed 
that, there were no differences of number of TH-IR 
positive dopaminergic neurons among three groups. 
However, the optical density of TH-IR positive dopa-
minegic neuon of early PD group was lower than those 
of control and SVHRP-treated groups.
2.3  Effect of SVHRP on mitochondria ultrastruc-
ture
The results showed that the ultastructure of mitochon-
dria was integrate in the control, which showed that 

mitochondrial cristae arrange orderly, whereas obvious 
damage occurred in the mitochondria of substantial 
nigra from the rat with early PD (shown by the arrows), 
which was evidenced by mitochondria swelling and 
mitochondrial cristae broken. In the meantime, SVHRP 
attenuated the damages in early PD rats (Fig. 2).
2.4  Effect of SVHRP on MAO-B, MDA and SOD 
activities in mitochondria
In order to provide more evidence for the neuroprotec-
tion of SVHRP on reversing the abnormal activities of 
MAO-B, SOD, and MDA in the mitochondria of the 
midbrain in the rats, we examined the effect of SVHRP 
on MAO-B, MDA and SOD activities in mitochondria. 
The results showed that SVHRP significantly reversed 
the increased MAO-B (P < 0.01, Fig. 3A) and MDA (P < 
0.01, Fig. 3B) activities, and restored the decreased 
SOD activity (P < 0.01, Fig. 3C) of the mitochondria in 
the midbrain of early PD rats.
2.4  Effect of SVHRP on antioxidant ability in the 
serum
We also measured the effect of SVHRP on antioxidant 
ability. The results showed that SVHRP reversed the 
decreased inhibition ability of hydroxyl free radical (P < 
0.01, Fig. 4A) and total antioxidant ability in the serum 
(P < 0.01, Fig. 4B) of early PD rats, which suggested 

Fig. 1. Tyrosine hydroxylase (TH)-immunoreactivity (IR) positive dopaminergic neurons in different groups detected by immunohis-
tochemistry staining. A: Representative images. Scale bar, 100 μm. B: The number of TH positive neurons. C: The optical density of 
TH positive neurons. Mean ± SD, n = 6. **P < 0.01 vs control; ##P < 0.01 vs SVHRP-treated.
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that the serum antioxidant ability of SVHRP-treated 
rats was reversed significantly.

3  DISCUSSION

Studies in both post-mortem PD patient tissues and 
Parkinsonian animal models have provided strong evi-

Fig. 3. Effects of SVHRP on antioxidative ability in mitochondria 
of neurons in midbrain. A: MAO-B activity. B: MDA content. C: 
SOD activity. Mean ± SD, n = 6. **P < 0.01 vs control; ##P < 0.01 
vs SVHRP-treated.

Fig. 4. Effects of SVHRP on antioxidative ability in the serum. 
A: Inhibition ability of hydroxyl free radical (HFR). B: Total 
antioxidant ability in the serum. Mean ± SD, n = 6. **P < 0.01 vs 
control; ##P < 0.01 vs SVHRP-treated.

Fig. 2. Mitochondrial ultrastructures in the neurons of substantial nigra in the rats from different groups detected by electron micros-
copy. Scale bar, 200 nm.
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dence supporting the involvement of oxidative stress in 
the progression of PD[22].

 The induction of 6-OHDA, an oxidative stress neu-
rotoxin, which can increase oxidative damage and 
decrease antioxidant ability in midbrain have been 
proved in rodent and human models of PD[23]. There-
fore, PD model induced by 6-OHDA can be used to 
select the candidate used as an antioxidant that could 
be a promising therapeutic target for PD. Recent studies 
have shown that specific peptide from scorpion venom 
might be a good candidate agent for the therapy of 
PD[16–20], however, underlying molecular mechanism for 
the neuroprotection of SVHRP in early-stage PD 
remains unclear.

Our previous work has proved that SVHRP can 
enhance the immunoreactivity of dopaminergic neurons 
in the substantia nigra[17]. The possible reason is that 
after the damage, the remaining dopaminergic neurons 
have the strong compensatory capacity of synthetizing 
and releasing the DA, which keeps the content of DA 
in striatum in a stable condition and prevents the obvi-
ous behavior deficits syndromes[10]. In this study, there 
was no significant difference of the number of dopami-
nergic neurons among these three groups, however, the 
optical density of TH-IR positive dopaminegic neuons 
was decreased in early PD rats, but reversed by 
SVHRP, which suggests that in the early PD the ability 
of composing DA decreases, while SVHRP can 
enhance that ability. The axons of dopaminergic neu-
rons are much more vulnerable than the cell body. So, 
it’s very senseful to make sure the early PD animal 
model is successfully established by observing the 
changes of axons. In the present study, we made the 
early PD animal model according to the previous paper[8], 
and the behavior tests further proved the model was 
successful. As for the evaluation for the protection of 
SVHRP, the damaged state of axons is a sensitive indi-
cator, and the results showed that SVHRP could protect 
the cell body by maintaining the function of axons. 
That can prove SVHRP could protect axons of dopami-
nergic neurons indirectly.

The antioxidant actions and the protection of mito-
chondria by SVHRP were studied by using the 6-OHDA 
rat model for early PD. Major findings from the present 
study suggest that SVHRP was found to be successful 
in reversing the abnormal activities of MAO-B, SOD, 
and MDA in the mitochondria of neurons in the mid-
brain, and improving the antioxidant ability of the serum 
in early-stage PD model rats. In the DA degradation 

pathway, MAO-B is the principal catabolic enzyme. 
DA is preferentially deaminated by MAO-B in the  
human nigrostriatal dopaminergic system. One possible 
source of increased oxidative stress is the elevated 
brain MAO-B levels, which have been demonstrated to 
increase with age and be related to neurodegenerative 
disease both in mice and human beings[22]. Increased 
oxidative stress in the Parkinsonian substantia nigra is 
believed to contribute to neurodegeneration, in part due 
to regionally elevated levels of MAO-B. In PD patients, 
platelet MAO-B activity was significantly higher[23]. 
Selective MAO-B inhibitors can protect neuronal cells 
in cellular and animal models of neurodegeneration[24]. 
MAO-B inhibitors increase DA levels, which should 
compensate for the nigrostriatal deficits in DA, so they 
are widely used as anti-PD drugs[25]. Our finding that 
SVHRP reversed the increased activities of MAO-B in 
the midbrain of early-stage PD rats supports the antiox-
idant mechanism of SVHRP-involved protection in 
early PD. MDA inhibits the aldehyde biotransformation 
step of DA catabolism, causing elevated levels of the 
endogenous neurotoxin 3,4-dihydroxyphenylacetalde-
hyde (DOPAL), which may be involved in oxidative 
stress leading to selective neurodegeneration as seen in 
PD[26].

Brain MDA levels significantly increased in 6-OHDA- 
lesioned rats[27], including midbrain[28], temporal lobe[29], 
hippocampus and striatum[30]. Significant correlations 
were found between the increased MDA levels and 
behavioral parameters in the rats with the spatial 
memory deficits by injecting 6-OHDA directly into the 
substantia nigra[31]. Plasma MDA increased in PD 
patients’ peripheral blood and peaked at early disease 
stages[32,33]. In the present study, MDA levels increased 
significantly in early PD rats, which is in agreement 
with previous studies[34–36] demonstrating that MDA is 
an early marker for PD. Furthermore, SVHRP reversed 
the increased levels of MDA, which helps to under-
stand the mechanism of the protection of SVHRP in 
early-stage PD. 

The activity of SOD increased in rats with unilateral 
lesion of right substantia nigra induced by 6-OHDA 
accompanied by cognitive impairment[31]. The antioxi-
dant defense enzyme SOD decreased in brain regions 
of 6-OHDA-lesioned rat[8,27–29,37–39], such as temporal 
lobe[29], striatum[40]. There was significant increase of 
SOD activity in peripheral blood of PD patients[33,41,42]. 
Patients with PD had significantly higher activity of 
SOD in red blood corpuscle (RBC). Endothelial SOD 
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activity was found reduced in PD patients[44]. Signifi-
cant correlation was found between lipid peroxidation and 
SOD activity[45]. In addition, it has been reported that 
chronic oxidative stress was induced by PARK2 muta-
tion, with finding that significant increase in the levels 
of SOD among the PD patients with PARK2 mutations [41]. 
SOD protects against 6-OHDA-induced cellular death 
and the toxic effects caused by 6-OHDA on mitochon-
drial respiration[46]. An interesting finding in the present 
study is that SVHRP attenuated the damage of mito-
chondrial ultrastructure in early-stage PD model rats. 
In the case of PD, mitochondrial dysfunction is 
believed to occur in response to accelerated rates of 
oxidative stress [47]. We speculate that SVHRP worked 
as an antioxidant for the protection of mitochondrial 
damage. In conclusion, oxidative stress and mitochon-
drial dysfunction are two pathophysiological factors of-
ten associated with the neurodegenerative process in-
volved in PD. The neuroprotective effects of SVHRP in 
6-OHDA rat model of early-stage PD include attenuat-
ing the damage of mitochondrial ultrastructure, revers-
ing the abnormal activities of MAO-B, SOD and MDA, 
and improving the antioxidant ability of the serum in 
early-stage PD model rats. The present study will aid in 
the understanding hallmarks associated with early-stage 
PD and provide mechanism insights that will aid in the 
development of new therapeutic agents for the treat-
ment of PD, which could give the clue to the early 
diagnosis. Moreover, SVHRP recovered those abnormal 
changes, which will benefit the prevention for PD early. 

Our study supports the previous hypothesis that oxi-
dative stress is implicated in the pathogenesis of PD. 
We also found the abnormal expression of Bcl-2 and 
Bax (unpublished). Apoptosis is one of the possible 
mechanisms involved in the mitochondrial dysfunction. 
Although whether SVHRP could pass the blood brain 
barrier (BBB) has not been proved directly, our results 
show the SVHRP protects the damaged dopaminergic 
neurons in substantia nigra objectively. The possible 
mechanisms will be explored in our current and future 
work. 
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