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ReviewParkinson’s Disease:
Mechanisms and Models

neuron degeneration. Nevertheless, despite advances
toward this goal, all current treatments are symptomatic;
none halt or retard dopaminergic neuron degeneration.
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3Department of Pharmacology and The main obstacle in the development of neuroprotec-

tive drugs is ignorance of the specific molecular events4Center for Neurobiology and Behavior
Columbia University that provoke neurodegeneration in PD. Prior to the last 5

years, most of the current hypotheses about the etiologyNew York, New York 10032
and pathogenesis of PD derived from postmortem tissue
or neurotoxic animal models, most notably, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced do-Parkinson’s disease (PD) results primarily from the

death of dopaminergic neurons in the substantia nigra. paminergic neurodegeneration. Exposure of humans to
MPTP causes a syndrome that mimics the core neuro-Current PD medications treat symptoms; none halt or

retard dopaminergic neuron degeneration. The main logical symptoms and relatively selective dopaminergic
neurodegeneration of PD, and MPTP toxicity in mice isobstacle to developing neuroprotective therapies is a

limited understanding of the key molecular events that the most commonly studied animal model of PD. These
studies have focused on three types of cellular dysfunc-provoke neurodegeneration. The discovery of PD

genes has led to the hypothesis that misfolding of tion that may be important in the pathogenesis of PD:
oxidative stress, mitochondrial respiration defect, andproteins and dysfunction of the ubiquitin-proteasome

pathway are pivotal to PD pathogenesis. Previously abnormal protein aggregation. In addition, the MPTP
monkey model has yielded valuable information regard-implicated culprits in PD neurodegeneration, mito-

chondrial dysfunction and oxidative stress, may also ing the functional alterations in basal ganglia circuits
that occur subsequent to striatal DA depletion, and thisact in part by causing the accumulation of misfolded

proteins, in addition to producing other deleterious model remains the gold standard for the preclinical eval-
uation of new therapies aimed at alleviating the symp-events in dopaminergic neurons. Neurotoxin-based

models (particularly MPTP) have been important in toms of PD. While many findings from MPTP studies
have been confirmed in human PD brains, there is in-elucidating the molecular cascade of cell death in do-

paminergic neurons. PD models based on the manipu- tense debate about the relationship between MPTP and
PD neurodegeneration.lation of PD genes should prove valuable in elucidating

important aspects of the disease, such as selective This situation changed in 1997 with the discovery that
mutations in the gene for �-synuclein cause an inheritedvulnerability of substantia nigra dopaminergic neurons

to the degenerative process. form of PD. In just 5 years since this breakthrough, three
additional PD-causing genes have been identified, and
linkage has been reported for three more. As in AD, theseIntroduction

In his classic 1817 monograph “Essay on the Shaking rare PD genes appear to operate through a common
molecular pathway, and their discovery may lead to thePalsy,” James Parkinson described the core clinical fea-

tures of the second most common age-related neurode- creation of novel animal models for the study of PD
pathogenesis. It will also be important to determinegenerative disease after Alzheimer’s disease (AD). Al-

though more than a century passed before the central whether these pathogenic proteins participate in the
molecular events leading to neurodegeneration in exist-pathological feature of Parkinson’s disease (PD) was

found to be the loss of neurons in the substantia nigra ing animal models of PD, in order to evaluate how closely
these models mimic the pathogenic events of the humanpars compacta (SNpc), the pace of discovery acceler-

ated following Arvid Carlsson’s 1958 discovery of dopa- disease.
Here, after discussing clinical and neuropathologicalmine (DA) in the mammalian brain. SNpc neurons were

then found to form the nigrostriatal dopaminergic path- characteristics of PD, we review current concepts of the
etiology and pathogenesis of PD. We then focus onway, and this line of research culminated with two key

discoveries. First, loss of SNpc neurons leads to striatal animal models of PD, evaluating how both well-estab-
lished toxin-induced models and newer genetic modelsDA deficiency, which is responsible for the major symp-

toms of PD. Second, replenishment of striatal DA have contributed to the understanding of PD.
through the oral administration of the DA precursor levo-
dopa (L-3,4-dihydroxyphenylalanine) alleviates most of Clinical Characteristics of PD
these symptoms. PD is a progressive disease with a mean age at onset

Although the discovery of levodopa revolutionized the of 55, and the incidence increases markedly with age,
treatment of PD, we soon learned that after several years from 20/100,000 overall to 120/100,000 at age 70. In
of treatment most patients develop involuntary move- about 95% of PD cases, there is no apparent genetic
ments, termed “dyskinesias,” which are difficult to con- linkage (referred to as “sporadic” PD), but in the re-
trol and significantly impair the quality of life. Current maining cases, the disease is inherited. Over time, symp-
research is directed toward prevention of dopaminergic toms worsen, and prior to the introduction of levodopa,

the mortality rate among PD patients was three times
that of the normal age-matched subjects. While levo-*Correspondence: sp30@columbia.edu
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normal postural reflexes, leading to falls and, some-Table 1. Parkinsonian Syndromes
times, confinement to a wheelchair. Freezing, the inabil-

Primary Parkinsonism
ity to begin a voluntary movement such as walking (i.e.,Parkinson disease (sporadic, familial)
patients remain “stuck” to the ground as they attempt toSecondary Parkinsonism
begin moving), is a common symptom of parkinsonism.Drug-induced: dopamine antagonists and depletors

Hemiatrophy-hemiparkinsonism Abnormalities of affect and cognition also occur fre-
Hydrocephalus: normal pressure hydrocephalus quently; patients may become passive or withdrawn,
Hypoxia with lack of initiative; they may sit quietly unless encour-
Infectious: postencephalitic

aged to participate in activities. Responses to questionsMetabolic: parathyroid dysfunction
are delayed, and cognitive processes are slowedToxin: Mn, CO, MPTP, cyanide
(“bradyphrenia”). Depression is common, and dementiaTrauma

Tumor is significantly more frequent in PD, especially in older
Vascular: multiinfarct state patients.

Parkinson-plus Syndromes
Cortical-basal ganglionic degeneration

Neurochemical and NeuropathologicalDementia syndromes: Alzheimer disease, diffuse Lewy body
Features of PDdisease, frontotemporal dementia

Lytico-Bodig (Guamanian Parkinsonism-dementia-ALS) The pathological hallmarks of PD are the loss of the
Multiple system atrophy syndromes: striatonigral degeneration, nigrostriatal dopaminergic neurons and the presence

Shy-Drager syndrome, sporadic olivopontocerebellar of intraneuronal proteinacious cytoplasmic inclusions,
degeneration (OPCA), motor neuron disease-parkinsonism

termed “Lewy Bodies” (LBs) (Figure 1). The cell bodiesProgressive pallidal atrophy
of nigrostriatal neurons are in the SNpc, and they projectProgressive supranuclear palsy
primarily to the putamen. The loss of these neurons,Familial Neurodegenerative Diseases

Hallervorden-Spatz disease which normally contain conspicuous amounts of neuro-
Huntington disease melanin (Marsden, 1983), produces the classic gross
Lubag (X-linked dystonia-parkinsonism) neuropathological finding of SNpc depigmentation (Fig-
Mitochondrial cytopathies with striatal necrosis

ure 1B). The pattern of SNpc cell loss appears to parallelNeuroacanthocytosis
the level of expression of the DA transporter (DAT) mRNAWilson disease
(Uhl et al., 1994) and is consistent with the finding that

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; ALS, amytrophic
depletion of DA is most pronounced in the dorsolaterallateral sclerosis.
putamen (Bernheimer et al., 1973), the main site of pro-
jection for these neurons. At the onset of symptoms,
putamenal DA is depleted �80%, and �60% of SNpc
dopaminergic neurons have already been lost. Thedopa has dramatically improved the quality of life for PD

patients, population-based surveys suggest that these mesolimbic dopaminergic neurons, the cell bodies of
which reside adjacent to the SNpc in the ventral tegmen-patients continue to display decreased longevity com-

pared to the general population (Hely et al., 1989; Mor- tal area (VTA), are much less affected in PD (Uhl et al.,
1985). Consequently, there is significantly less depletiongante et al., 2000; Levy et al., 2002). Furthermore, most

PD patients suffer considerable motor disability after of DA in the caudate (Price et al., 1978), the main site
of projection for these neurons.5–10 years of disease, even when expertly treated with

available symptomatic medications. Neuropathological studies of PD-related neurodegen-
eration suggest possible clues to the pathogenesis ofClinically, any disease that includes striatal DA defi-

ciency or direct striatal damage may lead to “parkinson- the disease. First, PD-associated loss of dopaminergic
neurons has a characteristic topology, distinct from theism,” a syndrome characterized by tremor at rest, rigid-

ity, slowness or absence of voluntary movement, pattern seen in normal aging. In PD, cell loss is concen-
trated in ventrolateral and caudal portions of the SNpc,postural instability, and freezing (Table 1). PD is the most

common cause of parkinsonism, accounting for �80% whereas during normal aging the dorsomedial aspect
of SNpc is affected (Fearnley and Lees, 1991). Thus,of cases.

PD tremor occurs at rest but decreases with voluntary even though age is an important risk factor for PD, the
processes that produce age-related dopaminergic neu-movement, so typically does not impair activities of daily

living. Rigidity refers to the increased resistance (stiff- ronal death are probably different from those in PD.
Second, the degree of terminal loss in the striatum ap-ness) to passive movement of a patient’s limbs. Bradyki-

nesia (slowness of movement), hypokinesia (reduction in pears to be more pronounced than the magnitude of
SNpc dopaminergic neuron loss (Bernheimer et al.,movement amplitude), and akinesia (absence of normal

unconscious movements, such as arm swing in walking) 1973), suggesting that striatal dopaminergic nerve ter-
minals are the primary target of the degenerative pro-manifest as a variety of symptoms, including paucity of

normal facial expression (hypomimia), decreased voice cess and that neuronal death in PD may result from
a “dying back” process. Experimental support for thevolume (hypophonia), drooling (failure to swallow with-

out thinking about it), decreased size (micrographia) and concept of dying back includes the observations that
in MPTP-treated monkeys the destruction of striatal ter-speed of handwriting, and decreased stride length dur-

ing walking. Bradykinesia may significantly impair the minals precedes that of SNpc cell bodies (Herkenham
et al., 1991), and in MPTP-treated mice, protection ofquality of life because it takes much longer to perform

everyday tasks such as dressing or eating. PD patients striatal terminals prevents the loss of SNpc dopaminer-
gic neurons (Wu et al., 2003). Third, the mechanism ofalso typically develop a stooped posture and may lose
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Figure 1. Neuropathology of Parkinson’s
Disease

(A) Schematic representation of the normal
nigrostriatal pathway (in red). It is composed
of dopaminergic neurons whose cell bodies
are located in the substantia nigra pars com-
pacta (SNpc; see arrows). These neurons
project (thick solid red lines) to the basal gan-
glia and synapse in the striatum (i.e., putamen
and caudate nucleus). The photograph dem-
onstrates the normal pigmentation of the
SNpc, produced by neuromelanin within the
dopaminergic neurons.
(B) Schematic representation of the diseased
nigrostriatal pathway (in red). In Parkinson’s
disease, the nigrostriatal pathway degener-
ates. There is a marked loss of dopaminergic
neurons that project to the putamen (dashed
line) and a much more modest loss of those
that project to the caudate (thin red solid line).
The photograph demonstrates depigmenta-
tion (i.e., loss of dark-brown pigment neuro-
melanin; arrows) of the SNpc due to the
marked loss of dopaminergic neurons.
(C) Immunohistochemical labeling of intra-
neuronal inclusions, termed Lewy bodies, in a
SNpc dopaminergic neuron. Immunostaining
with an antibody against �-synuclein reveals
a Lewy body (black arrow) with an intensely
immunoreactive central zone surrounded by
a faintly immunoreactive peripheral zone (left
photograph). Conversely, immunostaining
with an antibody against ubiquitin yeilds more
diffuse immunoreactivity within the Lewy
body (right photograph).

synaptic DA clearance in the striatum seems to be more the cerebral cortex (especially cingulate and entorhinal
cortices), olfactory bulb, and autonomic nervous sys-dependent on DAT than in the prefrontal cortex, where

other monoaminergic transporters and the synaptic en- tem. Degeneration of hippocampal structures and cho-
linergic cortical inputs contribute to the high rate ofzyme catechol-O-methyltransferase play a greater role

in terminating the actions of DA (Giros et al., 1996; Gogos dementia that accompanies PD, particularly in older pa-
tients. However, the clinical correlates of lesions to theet al., 1998; Mundorf et al., 2001). The prefrontal cortex

is a primary site of projection for VTA dopaminergic serotonergic and noradrenergic pathways are not as
clearly characterized as are lesions in the dopaminergicneurons, so this difference may be of importance in

understanding the relative resistance of VTA neurons to systems. Thus, while involvement of these neurochemi-
cal systems is generally thought to occur in more severePD-related degeneration. Differences in neuronal milieu

have also been identified surrounding SNpc dopaminer- or late-stage disease, the temporal relationship of dam-
age to specific neurochemical systems is not well estab-gic cell bodies. The neuropil of the substantia nigra,

composed of axon projections from the striatum and lished. For example, some patients develop depression
months or years prior to the onset of PD motor symp-globus pallidus, stains strongly for calbindin D28K, and

most dopaminergic cell bodies reside within this calbin- toms, which could be due to early involvement of nondo-
paminergic pathways.din-rich neuropil (Damier et al., 1999a). However, the

susceptible neurons in PD tend to be in calbindin-poor In life, the diagnosis of PD is made on clinical grounds,
but definite diagnosis requires the identification of bothareas of the substantia nigra (Damier et al., 1999b).

Although it is commonly thought that the neuropathol- LB and SNpc dopaminergic neuron loss. LBs are not
specific for PD, however, and are also found in AD, inogy of PD is characterized solely by dopaminergic neu-

ron loss, the neurodegeneration extends well beyond a condition called “dementia with LB disease,” and as
an incidental pathologic finding in people of advanceddopaminergic neurons (reviewed by Hornykiewicz and

Kish, 1987). Neurodegeneration and LB formation are age at a greater frequency than the prevalence of PD
(Gibb and Lees, 1988). The role of LB in neuronal cellfound in noradrenergic (locus coeruleus), serotonergic

(raphe), and cholinergic (nucleus basalis of Meynert, death is controversial, as are the reasons for their in-
creased frequency in AD and the relationship of inciden-dorsal motor nucleus of vagus) systems, as well as in
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tal LB to the occurrence of PD. LBs are spherical eosino- xenobiotic detoxifying enzyme cytochrome P450 may
be at greater risk of developing young-onset PD (Sandyphilic cytoplasmic protein aggregates composed of

numerous proteins (Figure 1C), including �-synuclein, et al., 1996). Further, isoquinoline derivatives toxic to
dopaminergic neurons have been recovered from PDparkin, ubiquitin, and neurofilaments, and they are found

in all affected brain regions (Forno, 1996; Spillantini et brains (Nagatsu, 1997).
al., 1998). LBs are more than 15 �m in diameter and
have an organized structure containing a dense hyaline Pathogenesis of PD
core surrounded by a clear halo. Electron microscopy Whatever insult initially provokes neurodegeneration,
reveals a dense granulovesicular core surrounded by a studies of toxic PD models and the functions of genes
ring of radiating 8–10 nm fibrils (Duffy and Tennyson, implicated in inherited forms of PD suggest two major
1965; Pappolla, 1986). hypotheses regarding the pathogenesis of the disease.

One hypothesis posits that misfolding and aggregation
of proteins are instrumental in the death of SNpc dopa-Etiology of PD

The cause of sporadic PD is unknown, with uncertainty minergic neurons, while the other proposes that the
culprit is mitochondrial dysfunction and the consequentabout the role of environmental toxins and genetic fac-

tors. The environmental toxin hypothesis was dominant oxidative stress, including toxic oxidized DA species.
The pathogenic factors cited above are not mutuallyfor much of the 20th century, especially because of the

example of postencephalitic PD (as described in the exclusive, and one of the key aims of current PD re-
search is to elucidate the sequence in which they actOliver Sacks’ book Awakenings) and the discovery of

MPTP-induced parkinsonism. However, the discovery and whether points of interaction between these path-
ways are key to the demise of SNpc dopaminergic neu-of PD genes (reviewed in “Gene-Based Models” section

below) has renewed interest in hereditary susceptibility rons. Potential points of interaction are diagrammed in
Figure 2. The finding that oxidative damage to �-synucleinfactors. Both probably play a role.

The environmental hypothesis posits that PD-related can enhance its ability to misfold and aggregate is one
example of such an interaction (Giasson et al., 2000).neurodegeneration results from exposure to a dopamin-

ergic neurotoxin. Theoretically, the progressive neuro- Another uncertain issue is whether the multiple cell
death-related molecular pathways activated during PDdegeneration of PD could be produced by chronic

neurotoxin exposure or by limited exposure initiating a neurodegeneration ultimately engage common down-
stream machinery, such as apoptosis, or remain highlyself-perpetuating cascade of deleterious events. The

finding that people intoxicated with MPTP develop a divergent. Clearly, this issue is of great consequence in
deciding about possible therapeutic strategies for PD.syndrome nearly identical to PD (Langston et al., 1983)

is a prototypic example of how an exogenous toxin can Misfolding and Aggregation of Proteins
The abnormal deposition of protein in brain tissue is amimic the clinical and pathological features of PD. Para-

quat is structurally similar to 1-methyl-4-phenylpyridin- feature of several age-related neurodegenerative dis-
eases, including PD. Although the composition and loca-ium (MPP�), the active metabolite of MPTP, and has

been used as herbicide. Like MPP�, rotenone is also a tion (i.e., intra- or extracellular) of protein aggregates
differ from disease to disease, this common feature sug-mitochondrial poison present in the environment, and it

is used as an insecticide and to kill unwanted lake fish. gests that protein deposition per se, or some related
event, is toxic to neurons.Human epidemiological studies have implicated resi-

dence in a rural environment and related exposure to Aggregated or soluble misfolded proteins could be
neurotoxic through a variety of mechanisms. Proteinherbicides and pesticides with an elevated risk of PD

(Tanner, 1992). Yet, there are no convincing data to impli- aggregates could directly cause damage, perhaps by
deforming the cell or interfering with intracellular traf-cate any specific toxin as a cause of sporadic PD, and

chronic environmental exposure to MPP� or rotenone ficking in neurons. Protein inclusions might also seques-
ter proteins that are important for cell survival. If so,is unlikely to cause PD. MPP�’s quaternary ammonium

cation prevents its passage across the blood-brain bar- there should be a direct correlation between inclusion
formation and neurodegeneration. However, a growingrier, and rotenone is so unstable in solution that it only

lasts a few days in lakes (Hisata, 2002). Still, cigarette body of evidence, particularly from studies of Hunting-
ton disease (HD) and other polyglutamine diseases (Sau-smoking and coffee drinking are inversely associated

with the risk for development of PD (Hernan et al., 2002), dou et al., 1998; Cummings et al., 1999), suggests that
there is no correlation between inclusion formation andreinforcing the concept that some environmental factors

do modify PD susceptibility. cell death. Cytoplasmic protein inclusions may not result
simply from precipitated misfolded protein but ratherAnother possibility, which does not fit neatly into a

genetic or environmental category, is that an endoge- from an active process meant to sequester soluble mis-
folded proteins from the cellular milieu (reviewed bynous toxin may be responsible for PD neurodegenera-

tion. Distortions of normal metabolism might create Kopito, 2000). Accordingly, inclusion formation, while
possibly indicative of a cell under attack, may be a de-toxic substances because of environmental exposures

or inherited differences in metabolic pathways. One fensive measure aimed at removing toxic soluble mis-
folded proteins (Cummings et al., 1999; Warrick et al.,source of endogenous toxins may be the normal metab-

olism of DA, which generates harmful reactive oxygen 1999; Cummings et al., 2001; Auluck et al., 2002). The
ability of chaperones such as Hsp-70 to protect againstspecies (ROS) (Cohen, 1984). Consistent with the endog-

enous toxin hypothesis is the report that patients harbor- neurodegeneration provoked by disease-related pro-
teins (including �-synuclein-mediated dopaminergicing specific polymorphisms in the gene encoding the



Review
893

Figure 2. Mechanisms of Neurodegeneration

A growing body of evidence, detailed in this review, suggests that the accumulation of misfolded proteins is likely to be a key event in PD
neurodegeneration. Pathogenic mutations may directly induce abnormal protein conformations (as believed to be the case with �-synuclein)
or damage the ability of the cellular machinery to detect and degrade misfolded proteins (Parkin, UCH-L1); the role of DJ-1 remains to be
identified. Oxidative damage, linked to mitochondrial dysfunction and abnormal dopamine metabolism, may also promote misfolded protein
conformations. It remains unclear whether misfolded proteins directly cause toxicity or damage cells via the formation of protein aggregates
(Lewy body). Controversy exists regarding whether Lewy bodies promote toxicity or protect a cell from harmful effects of misfolded proteins
by sequestering them in an insoluble compartment away from cellular elements. Oxidative stress, energy crisis (i.e., ATP depletion) and the
activation of the programmed cell death machinery are also believed to be factors that trigger the death of dopaminergic neurons in Parkinson’s
disease.

neuron loss) is consistent with the view that soluble Beckman and Ames, 1998), and neurons may be particu-
larly susceptible because they are postmitotic. In PD,misfolded proteins are neurotoxic (reviewed by Mu-

chowski, 2002; Auluck et al., 2002). LBs contain oxidatively modified �-synuclein, which in
vitro exhibits a greater propensity to aggregate thanIn patients with inherited PD, pathogenic mutations

are thought to cause disease directly by inducing abnor- unmodified �-synuclein (Giasson et al., 2000). Several
herbicides and pesticides induce misfolding or aggrega-mal and possibly toxic protein conformations (e.g., Bus-

sell and Eliezer, 2001) or indirectly by interfering with the tion of �-synuclein (Uversky et al., 2001; Manning-Bog
et al., 2002; Lee et al., 2002a). There also appears to beprocesses that normally recognize or process misfolded

proteins (the function of genes identified in inherited PD an age-related decline in the ability of cells to handle
misfolded proteins (reviewed by Sherman and Goldberg,is reviewed in the “Gene-Based Models” section below).

In sporadic PD, there is a similar focus both on direct 2001). Cells respond to misfolded proteins by inducing
chaperones, but if not properly refolded they are tar-protein-damaging modifications and on dysfunction of

chaperones or the proteasome that may indirectly con- geted for proteasomal degradation by polyubiquitina-
tion. With aging, the ability of cells to induce a varietytribute to the accumulation of misfolded proteins. The

triggers for dysfunctional protein metabolism in spo- of chaperones is impaired as is the activity of the protea-
some. Proteasomal dysfunction and the consequent ac-radic PD are only just beginning to be elucidated. One

trigger may be oxidative stress, long thought to play a cumulation of misfolded proteins may provoke a vicious
cycle, with excess misfolded proteins further inhibitingkey role in the pathogenesis of PD through damage caused

by ROS (reviewed by Przedborski and Jackson-Lewis, an already compromised proteasome. Thus, factors that
have been previously implicated in the pathogenesis of2000). The tissue content of abnormally oxidized proteins

(which may misfold) increases with age (reviewed by PD, including aging and oxidative stress, may converge
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to generate a proteotoxic insult to cells. The discoveries There are no data that convincingly link a primary abnor-
regarding the genetics of inherited PD are consistent mality of oxidative phosphorylation or ROS generation
with this scenario (see below). with PD. Furthermore, parkinsonism is rare in many dis-
Mitochondrial Dysfunction and Oxidative Stress eases known to result from mutations directly affecting
The possibility that an oxidative phosphorylation defect oxidative phosphorylation (“mitochondrial cytopathies”).
plays a role in the pathogenesis of PD was fueled by the When parkinsonism is encountered in these diseases,
discovery that MPTP blocks the mitochondrial electron it is generally accompanied by other symptoms not typi-
transport chain by inhibiting complex I (Nicklas et al., cal of PD. Therefore, many of the oxidative phosphoryla-
1987). Subsequent studies identified abnormalities in tion and ROS abnormalities documented in PD tissues
complex I activity in PD (reviewed by Greenamyre et al., could be nonspecific features of dying cells.
2001). In vitro studies indicate that such a complex I Mode of Cell Death
defect may subject cells to oxidative stress and energy How do cells ultimately die in PD? Does a common
failure. The abnormality of oxidative phosphorylation downstream pathway mediate all PD-related cell loss,
identified in PD is not confined to the brain (Schapira or is there significant heterogeneity in the pathways
et al., 1990), as reduced complex I activity has been activated in different sick neurons in a single patient, or
found in platelets from PD patients (Parker et al., 1989) among different patients with PD? The answers to these
and in cybrid cells (cells lines engineered to contain questions are important for the rational development of
mitochondria derived from platelets of PD patients therapeutic strategies for PD. In programmed cell death
[Swerdlow et al., 1996]). This latter finding suggests ei- (PCD), intracellular signaling pathways are activated to
ther that the observed complex I deficit is inherited from cause cell demise. Although physiological PCD is crucial
the mitochondrial genome or that some systemic toxic- during normal development and as a homeostatic mech-
ity leads to mutations in mitochondrial DNA. However, anism in some systems (e.g., immune system), dysregu-
mitochondrial DNA mutations have not yet been identi- lation of this pathway in the brain may contribute to
fied in PD patients. neurodegeneration. Until recently, investigators have

Nearly 100% of molecular oxygen is consumed by explored the possibility that PCD occurs in PD autopsy
the mitochondrial respiration, and powerful oxidants are specimens by searching for neurons that display fea-
normally produced as byproducts, including hydrogen tures of apoptosis, a morphological correlate of PCD.
peroxide and superoxide radicals. Inhibition of complex These morphological studies have yielded conflicting
I increases the production of the ROS superoxide, which results (reviewed by Vila and Przedborski, 2003). Com-
may form toxic hydroxyl radicals or react with nitric plicating matters, if apoptosis does occur in PD, it may
oxide to form peroxynitrite. These molecules may cause be difficult to detect by morphological criteria because
cellular damage by reacting with nucleic acids, proteins, the rate of neuronal loss may be low (McGeer et al.,
and lipids. One target of these reactive species may be 1988) and apoptotic cells seem to disappear rapidly
the electron transport chain itself (Cohen, 2000), leading (Raff et al., 1993). In addition, there may be nonapoptotic
to mitochondrial damage and further production of ROS. forms of PCD (Clarke, 1999; Sperandio et al., 2000).
Several biological markers of oxidative damage are ele- For these reasons, some studies of PCD in PD have
vated in the SNpc of PD brains (reviewed by Przedborski measured molecular components of PCD instead of re-
and Jackson-Lewis, 2000). Also, the content of the anti- lying on morphological criteria. For example, investiga-
oxidant glutathione is reduced in the SNpc of PD brains tions of the PCD molecule Bax demonstrate an in-
(Sian et al., 1994), consistent with increased ROS, al- creased number of Bax-positive SNpc dopaminergic
though this could also indicate a primary reduction of neurons in PD (Hartmann et al., 2001a), and compared
protective mechanisms against ROS. to controls, there is increased neuronal expression of

The presence of ROS would increase the amount of Bax in PD, suggesting that these cells are undergoing
misfolded proteins, increasing the demand on the ubi-

PCD (Tatton, 2000). SNpc dopaminergic neurons with
quitin-proteasome system to remove them. Dopaminer-

increased expression and subcellular redistribution of
gic neurons may be a particularly fertile environment for

the anti-PCD protein Bcl-xL and with activated PCDthe generation of ROS, as the metabolism of DA produces
effector protease caspase-3 have also been found inhydrogen peroxide and superoxide radicals, and auto-
greater proportion in PD (Hartmann et al., 2000, 2002).oxidation of DA produces DA-quinone (Graham, 1978),
Other molecular markers of PCD are altered in PD, in-a molecule that damages proteins by reacting with cys-
cluding the activation of caspase-8 (Hartmann et al.,teine residues. Mitochondria-related energy failure may
2001b) and caspase-9 (Viswanath et al., 2001). Takendisrupt vesicular storage of DA, causing the free cyto-
together, these studies suggest that the PCD machinerysolic concentration of DA to rise and allowing harmful
is activated in postmortem PD tissue. Nevertheless, be-DA-mediated reactions to damage cellular macromole-
cause these studies are single time point-descriptivecules. Thus, DA may be pivotal in rendering SNpc dopa-
assessments of patient tissue they cannot addressminergic neurons particularly susceptible to oxidative
whether the findings reflect a primary abnormality ofattack. Nevertheless, despite the literature documenting
PCD regulation or an appropriate “suicide” decision bymitochondrial dysfunction and indices of oxidative dam-
injured cells damaged by one of the processes reviewedage in tissue from PD patients, all of these observations
above.are correlative in nature, and the supportive data from

postmortem studies of PD patients suffers from the fact
Modeling PD in Animalsthat such specimens primarily consist of glial cells and
While recent genetic discoveries have led to significantnondopaminergic neurons, as most dopaminergic neu-

rons die long before these specimens become available. insight into molecular pathways of likely importance in



Review
895

PD pathogenesis, these discoveries have not contrib- The remainder of this review will focus on pathologic
uted to an understanding of other important aspects of and genetic animal models of PD. We will first review
the disease. Why is there a relatively selective loss of toxin-induced models, with an emphasis on the MPTP
dopaminergic neurons in PD? Is the toxicity provoked model, to date the best characterized of this class. We
by these disease alleles a cell-autonomous effect in will then focus on PD genes and review early attempts
dopaminergic neurons? What is the role of aging in both to exploit them to better model the disease.
sporadic and inherited PD, or posed differently, why
does it take many decades even for inherited PD to Toxin-Based Models
develop? Does pharmacological or genetic manipula- Among the neurotoxins used to induce dopaminergic
tion of the ubiquitin-proteasome pathway prevent (or neurodegeneration, 6-hydroxydopamine (6-OHDA), MPTP,
provoke) dopaminergic neurodegeneration? Do the dif- and more recently paraquate and rotenone have re-
ferent genetic forms of PD display unique responses to ceived the most attention. Presumably, all of these tox-
cell-based (e.g., stem cell) or pharmacological thera- ins provoke the formation of ROS. Rotenone and MPTP
pies? What is the relationship between the neurodegen- are similar in their ability to potently inhibit complex I,
eration provoked by disease allele-related pathways though they display significant differences, including,
and that occurring in sporadic PD? Although aspects importantly, their ease of use in animals. Only MPTP is
of these questions can be assessed in PD patients, clearly linked to a form of human parkinsonism, and it
postmortem tissue, and in vitro systems, it is clear that is thus the most widely studied model.
these and related questions will be addressed most 6-Hydroxydopamine
powerfully in animal models. 6-hydroxydopamine, the first animal model of PD asso-

The crucial requirement for a disease gene-based ciated with SNpc dopaminergic neuronal death, was
model of PD (also referred to as an “etiologic model”) introduced more than 30 years ago (Ungerstedt, 1968).
is the adult onset of relatively specific and progressive Although 6-OHDA-induced pathology differs from PD,
dopaminergic neuron degeneration. A behavioral corre- it is still extensively used. 6-OHDA-induced toxicity is
late of the nigrostriatal dopaminergic pathway degener- relatively selective for monoaminergic neurons, re-
ation is also desirable but, in rodents, will not likely sulting from preferential uptake by DA and noradrener-
parallel the motor deficits of PD because rodents do not gic transporters (Luthman et al., 1989). Reminiscent of PD,
develop typical parkinsonism. Alternatively, behaviors there is a range of sensitivity to 6-OHDA between the
that involve striatal function, such as habituation to a ventral midbrain dopaminergic neuronal groups; greatest
novel environment or the ability to learn a stimulus- loss is observed in the SNpc, while tuberoinfundibular
response paradigm, may be useful in assessing the stria- neurons are almost completely resistant (reviewed by
tal dopaminergic function. Because motor system orga- Jonsson, 1980). Inside neurons, 6-OHDA accumulates in
nization differs in rodents and humans, the value of a the cytosol, generating ROS and inactivating biological
particular behavioral phenotype depends upon its rela- macromolecules by generating quinones that attack nu-
tionship to striatal dopaminergic function rather than cleophilic groups (reviewed by Cohen and Werner, 1994).
apparent similarity to a symptom of PD. Specifically,

Because 6-OHDA cannot cross the blood-brain bar-
behaviors claimed to result from striatal DA deficiency

rier, it must be administered by local stereotaxic injec-
should improve with DA replacement. The formation of

tion into the substantia nigra, median forebrain bundle
LBs is also a desirable but not essential feature. While

(MFB; which carries ascending dopaminergic and sero-LBs are characteristic of PD, they are not specific, are
tonergic projections to the forebrain), or striatum to tar-not found in a minority of clinically defined PD cases,
get the nigrostriatal dopaminergic pathway (Javoy etand are not seen in parkin-related PD.
al., 1976; Jonsson, 1983). After 6-OHDA injections intoOther valuable approaches to modeling PD in animals
substantia nigra or the MFB, dopaminergic neurons startdo not depend on disease-related genes. These “patho-
degenerating within 24 hr and die without apoptoticlogic models” use toxins or non-PD-related genetic mu-
morphology (Jeon et al., 1995). When injected into thetations (Kostic et al., 1997) to mimic the selective degen-
striatum, however, 6-OHDA produces a more protractederation of dopaminergic neurons or exploit the loss of
retrograde degeneration of nigrostriatal neurons, whichdopaminergic neurons that normally occurs in rodents
lasts for 1–3 weeks (Sauer and Oertel, 1994; Przedborskiduring early postnatal development (Macaya et al., 1994;
et al., 1995). So far, however, none of the modes ofJackson-Lewis et al., 2000). These strategies are based
6-OHDA intoxication have led to the formation of LB-on the premise that dopaminergic neurons have a ste-
like inclusions. For striatal stereotaxic lesions, 6-OHDAreotyped death cascade that can be activated by a range
is injected unilaterally, with the contralateral side servingof insults or developmental signals. Clearly defining this
as control (Ungerstedt, 1971). These injections producecascade of events may lead to the identification of new
an asymmetric circling behavior in the animals, the mag-molecules of potential relevance to PD pathogenesis or
nitude of which depends on the degree of the nigrostria-treatment. Most notable is the MPTP model, partially
tal lesion (Ungerstedt and Arbuthnott, 1970; Hefti et al.,because of the striking similarity between PD and indi-
1980; Przedborski et al., 1995). The unilateral lesion canviduals intoxicated with MPTP. Finally, “symptomatic”
be quantitatively assayed; thus, a notable advantage ofor “pathophysiologic” models recapitulate the motor
this model is the ability to assess the anti-PD propertiessymptoms of PD and are used to develop symptomatic
of new drugs (Jiang et al., 1993) and the benefit of trans-therapies or to study circuit-related questions. Only non-
plantation or gene therapy to repair the damaged path-human primates accurately mimic the motor symptoms
ways (Bjorklund et al., 2002). However, it is not clearof PD and are therefore the only suitable animal for such

studies. whether the mechanism by which 6-OHDA kills dopa-
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developed abnormal postures and slowness of movement,
but it is unknown whether these features improved with
levodopa administration. Nevertheless, this model was
the first to link an environmental toxin of possible rele-
vance to PD to the pathologic hallmark of �-synuclein
aggregation, an association also seen in cell culture
studies (Uversky et al., 2001; Sherer et al., 2002; Lee et
al., 2002a).

In contrast to the findings of Betarabet and colleagues,
acute intoxication with rotenone seems to spare dopa-Figure 3. Structural Similarity between Paraquat and MPP�

minergic neurons (Ferrante et al., 1997). Furthermore, aThe only difference between these two compounds is the second
subsequent study of rats chronically infused with rote-N-methyl-pyridinium group that paraquat has instead of the phenyl

group as seen in MPP�. none demonstrated significant reductions in striatal
DARPP-32-positive, cholinergic, and NADPH diapho-
rase-positive neurons (Hoglinger et al., 2003). These re-minergic neurons shares key molecular features with
sults suggest that rotenone exerts a more widespreadPD.
neurotoxicity than originally proposed, challenging theParaquat
concept that dopaminergic neurons display preferentialThe herbicide paraquat (N,N�-dimethyl-4-4�-bipiridi-
sensitivity to complex I inhibition (Betarbet et al., 2000).nium) also induces a toxic model of PD. As noted above,
In addition, the use of rotenone in rodents is technicallyparaquat shows structural similarity to MPP� (Figure 3)
challenging (Betarbet et al., 2000). Nevertheless, theand is present in the environment. Exposure to paraquat
characteristic of LB-associated dopaminergic neurode-may confer an increased risk for PD (Liou et al., 1997).
generation in this model should enable investigatorsHowever, paraquat does not easily penetrate the blood
to perform a novel series of experiments exploring thebrain barrier (Shimizu et al., 2001), and its CNS distribu-
relationship between aggregate formation and neuronaltion does not parallel any known enzymatic or neuroana-
death.tomic distribution (Widdowson et al., 1996a, 1996b). The
MPTP: False Narcotic, Real Parkinsonian Toxintoxicity of paraquat appears to be mediated by the for-
In 1982, young drug users developed a rapidly progres-mation of superoxide radicals (Day et al., 1999). Sys-
sive parkinsonian syndrome traced to intravenous usetemic administration of paraquat to mice leads to SNpc
of a street preparation of 1-methyl-4-phenyl-4-propion-dopaminergic neuron degeneration accompanied by
oxypiperidine (MPPP), an analog of the narcotic meperi-

�-synuclein containing inclusions, as well as increases
dine (Demerol) (Langston et al., 1983). MPTP was thein �-synuclein immunostaining in frontal cortex (Man-
responsible neurotoxic contaminant, inadvertently pro-ning-Bog et al., 2002; McCormack et al., 2002). This
duced during the illicit synthesis of MPPP in a basementstudy was the first to include stereologic cell counts to
laboratory. In humans and monkeys, MPTP producesassess neurodegeneration, which may explain why the
an irreversible and severe parkinsonian syndrome char-

investigators found clear evidence of cell loss, com-
acterized by all of the features of PD, including tremor,

pared to earlier inconsistent reports (Brooks et al., 1999;
rigidity, slowness of movement, postural instability, and

Thiruchelvam et al., 2000a, 2000b). It remains to be seen
freezing. In MPTP-intoxicated humans and nonhuman

whether the dopaminergic toxicity is selective or primates, the beneficial response to levodopa and de-
whether other cell types are similarly affected. Regard- velopment of long-term motor complications to medical
less of the outcome of those investigations, the ability therapy are virtually identical to that seen in PD patients.
to induce dopaminergic neuronal loss and �-synuclein- Also similar to PD, the susceptibility to MPTP increases
positive inclusions in a reliable fashion may prove valu- with age in both monkeys and mice (Rose et al., 1993;
able for studies of the role of �-synuclein in neurodegen- Irwin et al., 1993; Ovadia et al., 1995).
eration. The data regarding the comparison between PD- and
Rotenone MPTP-related neuropathology derive largely from MPTP
Rotenone is the most potent member of the rotenoids, studies in monkeys (Forno et al., 1993), because only
a family of natural cytotoxic compounds extracted from four human MPTP cases have come to autopsy (Davis
tropical plants; it is widely used as an insecticide and et al., 1979; Langston et al., 1999). These studies show
fish poison. Rotenone is highly lipophilic and readily that, as in PD, monkeys treated with low-dose MPTP
gains access to all organs (Talpade et al., 2000). Rote- exhibit preferential degeneration of putamenal versus
none binds (at the same site as MPP�) to and inhibits caudate dopaminergic nerve terminals (Moratalla et al.,
mitochondrial complex I. 1992). Similarly, MPTP damages the dopaminergic path-

As discussed in the section on the etiology of PD, epide- ways in a pattern similar to that seen in PD, including
miological studies suggest that exposure to pesticides relatively greater cell loss in the SNpc than the VTA and
may be a risk factor. Greenamyre and colleagues reported a preferential loss of neurons in the ventral and lateral
that the administration of low-dose intravenous rotenone segments of the SNpc (Sirinathsinghji et al., 1992; Varas-
to rats produces selective degeneration of nigrostriatal tet et al., 1994); this regional pattern is also found in
dopaminergic neurons accompanied by �-synuclein-posi- MPTP-treated mice (Seniuk et al., 1990; Muthane et al.,
tive LB-like inclusions (Betarbet et al., 2000). Because 1994). Also reminiscent of PD (Hirsch et al., 1988), dopa-
rotenone may freely enter all cells, this study suggested minergic neurons that contain neuromelanin are more
that dopaminergic neurons are preferentially sensitive susceptible to MPTP-induced degeneration (Herrero et

al., 1993). Neuromelanin may contribute neurodegenera-to complex I inhibition. Rotenone-intoxicated animals
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tion in PD and MPTP-treated monkeys by catalyzing
ROS formation through an interaction with iron selec-
tively in pigmented neurons (Zecca et al., 2001). A variety
of organic molecules interact with neuromelanin, includ-
ing pesticides, MPTP, and MPP� (D’Amato et al., 1986),
so it may contribute to toxicity of pigmented neurons
by acting as a depot for toxic compounds.

The monkey MPTP model does not include two char-
acteristic features of PD. First, neurons are not consis-
tently lost from other monaminergic nuclei, such as the
locus coeruleus, a typical feature of PD (Forno et al.,
1986, 1993). Second, although intraneuronal inclusions
resembling LBs have been described (Forno et al., 1986),
classical LBs have not been demonstrated convincingly
in the brains of MPTP-intoxicated patients or monkeys
(Forno et al., 1993). These cases were exposed to acute
regimens of MPTP, so the lack of LB-like formation in
MPTP-intoxicated humans and monkeys may reflect the
fact that in these cases dopaminergic neurons were
rapidly injured. Chronic infusion of rotenone does pro-
duce intraneuronal �-synuclein-containing proteina-
cious aggregates (Betarbet et al., 2000), consistent with
the possibility that the speed of intoxication may influ-
ence the subsequent neuropathologic features.

Despite these neuropathologic shortcomings, the
monkey MPTP model is the gold standard for the as-
sessment of novel strategies and agents for the treat-
ment of PD symptoms. For example, electrophysiologic
studies of MPTP monkeys revealed that hyperactivity

Figure 4. Schematic Representation of MPTP Metabolismof the subthalamic nucleus is a key factor in the genesis
After systemic administration, MPTP crosses the blood-brain bar-of PD motor dysfunction (Bergman et al., 1990). This
rier. Once in the brain, MPTP is converted to MPDP� by MAO-Bseminal discovery led to the targeting of this structure within nondopaminergic cells, such as glial cells and serotonergic

using chronic high-frequency stimulation procedures neurons (not shown), and then to MPP� by an unknown mechanism
(also called deep brain stimulation) to effectively amelio- (?). Thereafter, MPP� is released, again by an unknown mechanism

(?), into the extracellular space. MPP� is concentrated into dopa-rate the motor function of PD patients whose symptoms
minergic neurons via the dopamine transporter (DAT).cannot be further improved with medical therapy (Li-

mousin et al., 1998). In addition, MPTP-treated monkeys
(Gash et al., 1996; Kordower et al., 2000) were used to

lipophilic, crosses the blood-brain barrier within minutes
demonstrate that the delivery of glial-derived neuro-

(Markey et al., 1984). Once in the brain, the pro-toxintrophic factor (GDNF) both significantly limits MPTP-
MPTP is oxidized to 1-methyl-4-phenyl-2,3-dihydropyri-induced nigrostriatal dopaminergic neurodegeneration
dinium (MPDP�) by monoamine oxidase B (MAO-B) inand can lead to behavioral recovery when given to pre-
glia and serotonergic neurons, the only cells that containviously lesioned animals (Kordower et al., 2000). These
this enzyme. It is then converted to MPP� (probably bystudies form the basis for current attempts to use GDNF
spontaneous oxidation), the active toxic molecule, andin PD patients (Gill et al., 2003). Because of practical
released by an unknown mechanism into the extracellu-considerations, MPTP monkeys have not generally been
lar space. Since MPP� is a polar molecule, it dependsused to explore the molecular mechanisms of dopamin-
on the plasma membrane carriers to enter cells. MPP�ergic neurodegeneration; the MPTP mouse model is typ-
is a high-affinity substrate for the DAT, as well as forically used for such studies.
norepinephrine and serotonin transporters (Javitch etMPTP Metabolism and PD Neurodegeneration Selec-
al., 1985; Mayer et al., 1986). Pharmacological inhibitiontivity. Since the initial discovery of MPTP-induced par-
or genetic deletion of DAT prevents MPTP-induced do-kinsonism, much has been learned about the molecular
paminergic damage (Javitch et al., 1985; Bezard et al.,pathway used by this toxin, as illustrated in Figure 4.
1999), demonstrating the obligatory character of thisImportantly, this knowledge enables investigators to use
step in MPTP neurotoxicity. However, uptake by DATMPTP as a biological probe to explore the functions of
does not entirely explain the selectivity of the nigrostria-PD genes and dissect the molecular events that occur
tal dopaminergic lesion caused by MPTP. While thereduring neurodegeneration of dopaminergic neurons. For
are quantitative differences in DAT expression betweenexample, mice mutant for PD genes (or other genes of
more susceptible SNpc neurons and less susceptiblepossible relevance to dopaminergic neuronal death) can
VTA neurons in monkeys (Haber et al., 1995), differencesbe injected with MPTP, and if these mice display mark-
in DA uptake activity of comparable magnitudes be-edly enhanced or suppressed dopaminergic neuronal
tween rats and mice and among mouse strains do notdeath, one can then investigate which of the known
correlate with differences in MPTP sensitivity (Giovannimolecular targets of MPTP are altered.

After systemic administration, MPTP, which is highly et al., 1991, 1994). Furthermore, while MPP� is concen-
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Figure 5. Schematic Representation of
MPP� Intracellular Pathways

Inside dopaminergic neurons, MPP� can fol-
low one of three routes: (1) concentration into
mitochondria through an active process
(toxic); (2) interaction with cytosolic enzymes
(toxic); (3) sequestration into synaptic vesi-
cles via the vesicular monoamine trans-
porters (VMAT; protective). Within the mito-
chondria, MPP� blocks complex I (X), which
interrupts the transfer of electrons from com-
plex I to ubiquinone (Q). This perturbation en-
hances the production of reactive oxygen
species (not shown) and decreases the syn-
thesis of ATP.

trated in (Speciale et al., 1998) and produces biochemi- Fabre et al., 1999), the brain regions the most sensitive
to MPTP. In vitro experiments in mitochondria isolatedcal alterations in all monoaminergic neurons (Burns et

al., 1983; Hallman et al., 1984; Wallace et al., 1984; Rose from whole brain demonstrate that complex I activity
must be inhibited by �70% to significantly impair ATPet al., 1993; Ovadia et al., 1995), degeneration is most

prominent in dopaminergic neurons. In this regard, it is production (Davey and Clark, 1996), but data from PD
postmortem tissues demonstrate only a �40% inhibitionparticularly striking that the highest levels of MPP� are

found in the adrenal medulla without causing the loss of complex I activity (Schapira et al., 1990). Interestingly,
in vitro experiments with synaptic-derived mitochondriaof chromaffin cells (Reinhard et al., 1987).

Inside neurons (Figure 5), MPP� can follow at least demonstrate that significant ATP depletion results from
as little as �25% inhibition of complex I (Davey et al.,three routes: (1) it can bind to the vesicular monoamine

transporter-2 (VMAT2), which translocates MPP� into 1998), indicating a much tighter functional relationship
between complex I activity and ATP production in syn-synaptosomal vesicles (Liu et al., 1992); (2) it can be

concentrated within the mitochondria by a mechanism aptic than in somatic mitochondria. Thus, mitochondria
from phenotypically distinct neuronal populations maythat relies on the mitochondrial transmembrane poten-

tial (Ramsay and Singer, 1986); and (3) it can remain in be differentially affected in PD, and the current approach
of assessing mitochondrial function in specimens fromthe cytosol to interact with cytosolic enzymes, espe-

cially those carrying negative charges (Klaidman et al., whole tissue may not depict accurately abnormalities
present in only a minority of cells. Furthermore, even1993). Vesicular sequestration of MPP� appears to pro-

tect cells from MPTP-induced neurodegeneration by se- the small alterations in complex I activity observed in
PD may be particularly harmful to dopaminergic nervequestering the toxin and preventing it from accessing

mitochondria, its likely site of action (see below). The terminals, which are rich in synaptic mitochondria.
Another early effector of complex I inhibition due toimportance of vesicular sequestration has been estab-

lished by a number of experiments, including those MPP� may be oxidative stress. Indeed, by hampering
the flow of electrons through complex I, MPP� canshowing that cells transfected to express greater den-

sity of VMAT2 are converted from MPP�-sensitive to stimulate the production of ROS, especially superoxide
(Hasegawa et al., 1990, 1997). MPP� effects on mito-MPP�-resistant cells (Liu et al., 1992) and that heterozy-

gous VMAT2 null mice display enhanced sensitivity to chondria can also indirectly stimulate the production of
ROS by triggering DA leakage from synaptic vesicles toMPTP-induced neurodegeneration (Takahashi et al.,

1997). It appears that the ratio of DAT to VMAT2 expres- the cytosol, likely due to the inability of VMAT2 to main-
tain concentration gradients in the face of the ATP deple-sion predicts the likelihood of neuronal degeneration

both in PD and the MPTP model. For instance, the puta- tion (reviewed by Johnson, 1988). Findings from in vivo
studies provide support for the importance of ROS inmenal dopaminergic terminals, which are most severely

affected by both MPTP and PD, have a higher DAT/ MPTP-induced neurodegeneration. Mice transgenic for
superoxide dismutase-1 (SOD1), a key ROS scavengingVMAT2 ratio than those in the caudate, which are less

affected (Miller et al., 1999). enzyme, are resistant to MPTP-induced dopaminergic
neuron degeneration (Przedborski et al., 1992), andMechanisms of Nigrostriatal Neurodegeneration:

Hints from MPTP. Once inside the mitochondria, MPP� other studies in mice imply a key role for reactive spe-
cies, including NO, as critical effectors in MPTP toxicityimpairs oxidative phosphorylation by inhibiting the mul-

tienzyme complex I of the mitochondrial electron trans- (reviewed by Przedborski and Vila, 2003; Przedborski et
al., 2003).port chain (Nicklas et al., 1985). This blockade rapidly

leads to decreases in tissue ATP content, particularly Alterations in energy metabolism and generation of
ROS peak within hours of MPTP administration, daysin the striatum and ventral midbrain (Chan et al., 1991;
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before overt neuronal death has occurred (Jackson- differ from those governing axonal destruction (Raff et
Lewis et al., 1995). Therefore, these initial events are al., 2002).
not likely to directly kill most cells but rather set into MPTP administration also leads to the accumulation
play downstream cellular events that ultimately kill most and nitration of �-synuclein in the cytosol of SNpc dopa-
dopaminergic neurons (Mandir et al., 1999; Saporito et minergic neurons (Vila et al., 2000; Przedborski et al.,
al., 2000; Vila et al., 2001). 2001), and ablation of �-synuclein in mutant mice pre-

Prolonged administration of low to moderate doses vents MPTP-induced dopaminergic neurodegeneration
of MPTP to mice leads to morphologically defined apo- (Dauer et al., 2002). While it is not clear whether
ptosis of SNpc dopaminergic neurons (Tatton and Kish, �-synuclein plays any direct role in regulating PCD, the
1997). Under this regimen of MPTP intoxication, Bax, a expression of mutant �-synuclein in cell cultures may
potent PCD agonist and member of the Bcl-2 family, is promote apoptosis (Xu et al., 2002), and cytochrome c
upregulated in SNpc dopaminergic neurons (Vila et al., has been reported to stimulate in vitro aggregation of
2001). Bax upregulation coincides with its translocation �-synuclein (Hashimoto et al., 1999). Collectively, these
to mitochondria, mitochondrial release of cytochrome data demonstrate that the activation of PCD is instru-
c (an electron carrier and a mediator of PCD), and activa- mental in MPTP toxicity. They also suggest that PCD
tion of caspases 9 and 3 (Viswanath et al., 2001). At the alterations in PD postmortem samples are of pathologi-
same time, PCD antagonists such as Bcl-2 are downreg- cal significance and that targeting specific PCD mole-
ulated in the SNpc (Vila et al., 2001). Consistent with cules may be a valuable neuroprotective strategy for
these observations, Bax null and Bcl-2 transgenic mice the treatment of PD (Vila and Przedborski, 2003).
are both resistant to MPTP neurotoxicity (Yang et al.,
1998; Offen et al., 1998; Vila et al., 2001).

How MPTP provokes these changes in Bcl-2 family Gene-Based Models
members remains to be elucidated. MPTP causes oxida- As discussed above, uncertainty remains regarding
tive damage to DNA (Mandir et al., 1999; Mandavilli et which of the molecular events provoked by toxins relate
al., 2000), which may be important in inducing Bax via to human PD. The discovery of PD genes is particularly
p53 activation. The tumor suppressor protein p53 is one exciting because theoretically it will allow the generation
of the few molecules known to regulate Bax expression of novel models of definite significance to specific forms
and is activated by DNA damage. Furthermore, pharma- of the human disease, and evidence is emerging to link
cological inhibition of p53 attenuates MPTP-induced these genetic forms to idiopathic PD. Here, we will briefly
Bax upregulation and the subsequent SNpc dopaminer- review the current state of knowledge of PD genes and
gic neuron death (Duan et al., 2002), and p53 null mice then discuss early attempts to exploit these discoveries
are resistant to MPTP-induced neurodegeneration to generate novel PD models.
(Trimmer et al., 1996). The rationale for studying rare genetic forms of a com-

Activation of the JNK pathway following DNA damage mon sporadic illness is the expectation that the pheno-
is required in vitro for Bax mitochondrial translocation typic similarity between the genetic and sporadic forms
and the ensuing recruitment of the mitochondrial apo- of the disease indicates that they share important patho-
ptotic pathway (Ghahremani et al., 2002; Lei et al., 2002). genic mechanisms and, consequently, that genetic in-
Activation of the JNK pathway follows MPTP administra- formation will help focus research on a key biochemical
tion (Saporito et al., 2000; Xia et al., 2001), and pharma- pathway (Figure 2). Indeed, all of the PD genes that have
cological blockade of JNK (Saporito et al., 1999) or ade- been identified and studied in some detail—�-synuclein,
noviral-directed expression of the JNK binding domain parkin, and ubiquitin C-terminal hydrolase L1 (UCHL-
of JNK-interacting protein-1 (Xia et al., 2001) results in 1)—appear to participate in the ubiquitin-proteasome
marked attenuation of MPTP-induced SNpc dopaminer- pathway, a particularly compelling finding considering
gic cell death.

the LB protein aggregates that characterize PD neuropa-
Approaches aimed at inhibiting PCD at a more down-

thology. Although PD-causing mutations in the gene DJ-1
stream level, such as by interfering with activation of

have only recently been identified, this protein also ap-caspases, have yielded inconsistent results. Adenoviral
pears to have a potential link to the ubiquitin-protea-gene transfer of X chromosome-linked inhibitor of apo-
some pathway (Takahashi et al., 2001). Much of theptosis (XIAP), a protein caspase inhibitor, prevents
current research in PD is focused on the normal roleMPTP-induced SNpc dopaminergic neuron death, al-
and functional interaction between these PD proteinsthough it does not prevent the loss of striatal dopaminer-
and how these functions are disrupted by pathogenicgic terminals (Eberhardt et al., 2000). In contrast, trans-
mutations. Polymorphisms at the parkin and synucleingenic neuronal expression of the general caspase
loci may also contribute to the risk of idiopathic PDinhibitor protein baculoviral p35 specifically attenuates
(Farrer et al., 2001), and parkin mutations are found inboth MPTP-induced neuronal death and DA depletion
patients without a family history of PD, especially with(Viswanath et al., 2001). As with XIAP, some in vitro
symptom onset before the age of 30 (Lucking et al.,studies suggest that resistance to PCD can be induced
2000). A number of epidemiological studies suggest thatselectively in the cell body. The broad-spectrum cas-
single-nucleotide polymorphisms at different loci maypase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoro-
be associated with PD susceptibility (Martin et al., 2001;methylketone and peptide inhibitors of caspases 2, 3,
Li et al., 2002; Zareparsi et al., 2002), but the lack ofand 9 prevent the loss of dopaminergic cell bodies of
concordance for PD in monozygotic twins arguescultured ventral midbrain neurons exposed to MPP�,
against a strong genetic contribution in sporadic PDbut the neurites are not spared (Bilsland et al., 2002);

the molecular pathways governing neuronal death may (Tanner et al., 1999).
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Synuclein The fact that �-synuclein is abundant in LBs suggests
that its propensity to misfold and form amyloid fibrilsTwo missense mutations [Ala53 → Thr (A53T) and Ala30 →

Pro (A30P)] in �-synuclein cause dominantly inherited may be responsible for its neurotoxicity in pathological
situation such as PD and that pathogenic mutationsPD (Polymeropoulos et al., 1997; Kruger et al., 1998).

Clinical and pathological features typical of PD have endow it with a toxic gain of function. A growing litera-
ture supports this notion and links the pathogenesis ofbeen found in brains from patients with either mutation,

although some atypical features have also been noted PD to other neurodegenerative diseases that involve
protein aggregation (reviewed by Goedert, 2001). Mis-(Kruger et al., 1998; Spira et al., 2001). Mutations in

�-synuclein have not been found in sporadic PD (Lynch folding of �-synuclein may interfere with its normal func-
tions, but it is unlikely that loss of function plays a majoret al., 1997; Munoz et al., 1997; Chan et al., 1998), so

the concept that �-synuclein-mutant and sporadic PD role in �-synuclein-related neurodegeneration (Abelio-
vich et al., 2000; Dauer et al., 2002).share common pathogenic mechanisms rests predomi-

nantly on the observation that �-synuclein is a major Both wild-type and mutant �-synuclein form amyloid
fibrils resembling those seen in LBs (Conway et al., 1998;component of LBs in sporadic PD (Spillantini et al., 1998).

The normal physiological role of �-synuclein is just Giasson et al., 1999) as well as nonfibrillary oligomers
(Conway et al., 1998), termed “protofibrils.” Since the twobeginning to be elucidated, and this prevalent presynap-

tic protein may modulate synaptic vesicle function (re- known pathogenic �-synuclein mutations promote the for-
mation of protofibrils (Conway et al., 2000), they may beviewed by Kahle et al., 2002). �-Synuclein is widely ex-

pressed in the nervous system, where it is found in the toxic species of �-synuclein. Consistent with this view
and the association of �-synuclein with synaptic vesicles,presynaptic nerve terminals in close association with

synaptic vesicles (Maroteaux et al., 1988; George et al., protofibrils may cause toxicity by permeabilizing synap-
tic vesicles (Volles et al., 2001; Lashuel et al., 2002),1995). It binds reversibly to brain vesicles and compo-

nents of the vesicular trafficking machinery (Jensen et allowing DA to leak into the cytoplasm and participate
in reactions that generate oxidative stress (reviewedal., 1998, 1999, 2000). In striatal dopaminergic terminals,

�-synuclein participates in the modulation of synaptic above). Furthermore, the selective vulnerability of dopa-
minergic neurons in PD may derive from the ability of DAfunction, possibly by regulating the rate of cycling of

the readily releasable pool (Abeliovich et al., 2000). itself to stabilize these noxious �-synuclein protofibrils
(Conway et al., 2001). Nevertheless, protofibrils haveDownregulation of this protein by antisense oligonucleo-

tide in hippocampal cell culture is reported to decrease only been observed and studied in vitro, so further work
will need to explore whether they form in neurons andthe distal pool of synaptic vesicles and alters the expres-

sion of vesicular-associated proteins in cultured hippo- if their formation correlates with neurotoxicity.
Parkincampal glutamatergic neurons (Murphy et al., 2000).

However, no abnormalities were identified in an exten- Loss-of-function mutations in the gene encoding parkin
cause recessively inherited parkinsonism (Kitada et al.,sive quantitative analysis of synaptic-related proteins

from either whole-brain homogenates (Schluter et al., 1998). Although this form of parkinsonism was originally
termed autosomal recessive juvenile parkinsonism, the2003) or hippocampal cultures (Cabin et al., 2002) from

synuclein null mice. While the ultrastructure of striatal clinical phenotype is now known to include older-onset
patients (Lincoln et al., 2003). In general, however, parkinsynapses appears normal in brain sections from mice

that lack synuclein (Abeliovich et al., 2000), there may mutations are found in PD patients with onset before
age 30, particularly those with a family history consistentbe fewer “non-docked” distal synaptic vesicles in hippo-

campal brain sections from synuclein null mice (Cabin with recessive inheritance (Mizuno et al., 2001). Clini-
cally, parkin mutant patients display the classical signset al., 2002). Nevertheless, since quantitative EM studies

are challenging to perform, this finding awaits confirma- of parkinsonism but with marked improvement of symp-
toms with sleep, abnormal dystonic movements, and ation. Unfortunately, none of the studies of synuclein null

mice specifically assessed dopaminergic nerve terminal striking response to levodopa. Heterozygote mutations
in parkin may also lead to dopaminergic dysfunctionsynaptic protein expression and morphology; this re-

mains a significant gap in the characterization of these and later onset of PD (Hilker et al., 2001; Hedrich et al.,
2002). Pathologically, parkin-related PD is characterizedanimals.

Biochemical and biophysical evidence is also consis- by loss of SNpc dopaminergic neurons, but it is not
typically associated with LBs (Mizuno et al., 2001).tent with a role for �-synuclein in cellular membrane

dynamics. As seen with synaptic vesicles, �-synuclein It is uncertain how loss of parkin function leads to
dopaminergic neuron degeneration, but clues arebinds to lipid membranes, and this binding changes the

conformation of the previously unfolded N terminus of emerging from the identification of its normal function.
Parkin, a 465 amino acid protein, contains two RINGthe protein to a stable �-helical secondary structure

(Davidson et al., 1998; Eliezer et al., 2001), suggesting finger domains separated by an in-between RING (IBR)
finger domain at the C terminus and an ubiquitin-likethat membrane binding elicits a functionally important

alteration in the protein. Additional observations support homology domain at the N terminus. The presence of
an IBR led to the finding that parkin is an E3 ubiquitinthe view that the cellular membrane is a key site of

�-synuclein action (Pronin et al., 2000; Ahn et al., 2002). ligase (Zhang et al., 2000; Shimura et al., 2000), a compo-
nent of the ubiquitin-proteasome system that identifiesOne membrane-related function of �-synuclein may be

trafficking proteins to the plasma membrane, as sug- and targets misfolded proteins to the proteasome for
degradation (reviewed by Sherman and Goldberg, 2001).gested by the demonstration that �-synuclein could be

involved in the membrane localization of DAT (Lee et The upstream ubiquitin ligases (E1 and E2) cooperate
nonspecifically to tag misfolded proteins with a singleal., 2001).
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ubiquitin, while E3 ligases confer target specificity by Both the I93M mutation and the S18Y polymorphism
binding to specific molecules or classes of molecules alter UCH-L1 ligase activity in a manner consistent with
facilitating the polyubiquitination necessary for tar- the hypothesis that impaired activity of the ubiquitin
geting to the proteasome. Many parkin mutations abol- proteasome system is critical in PD pathogenesis: UCH-
ish this E3 ligase activity, suggesting that the accumula- L1 ligase activity is decreased by the pathogenic I93M
tion of misfolded parkin substrates could be responsible mutation and increased by the protective S18Y polymor-
for the demise of SNpc dopaminergic neurons in PD. phism (Liu et al., 2002).

A number of parkin substrates have been identified DJ-1
(Zhang et al., 2000; Shimura et al., 2001; Chung et al., DJ-1 mutations were identified in two consanguineous
2001; Imai et al., 2001; Staropoli et al., 2003). Some of pedigrees with autosomal recessive PD (Bonifati et al.,
these substrates appear to link parkin and synuclein 2002). One family carried a deletion predicted to abolish
function, and one—cyclin E—links parkin function to a protein function, while the other harbored a missense
molecule previously implicated in neuronal apoptosis. mutation that results in the insertion of a proline into an
Three reports suggest a relationship between parkin and �-helical region. Expression of this proline mutant form
synuclein function (Shimura et al., 2001; Petrucelli et al., of DJ-1 appears to lead to its accumulation in mitochon-
2002) or aggregation (Chung et al., 2001). Notably, the dria (Bonifati et al., 2002), and DJ-1 has been implicated
E3 ligase activity of parkin modulates the sensitivity of as a cellular monitor of oxidative stress (Mitsumoto and
cells to both proteasome inhibitor- and mutant sy- Nakagawa, 2001; Mitsumoto et al., 2001).
nuclein-dependent cell death (Petrucelli et al., 2002).
A number of observations suggest that the functional Synuclein-Based Models
interaction between synuclein and parkin may involve All published genetic models of PD have been based
the proteasome: synuclein interacts with and may be on �-synuclein, primarily the transgenic overexpression
degraded by the proteasome (Ghee et al., 2000; Snyder of mutant or wild-type forms in mice or flies (Masliah et
et al., 2003), overexpression of synuclein inhibits the al., 2000; van der Putten et al., 2000; Feany and Bender,
proteasome (Stefanis et al., 2001), and mutant synuclein 2000; Matsuoka et al., 2001; Giasson et al., 2002; Lee
increases the sensitivity of cells to proteasome inhibition et al., 2002b). In general, these studies demonstrate
(Tanaka et al., 2001; Petrucelli et al., 2002). Parkin has that transgenic overexpression of �-synuclein causes
also been found to function in a multiprotein ubiquitin neurotoxicity but that �-synuclein ablation is not associ-
ligase complex that ubiquitinates cyclin E (Staropoli et ated with neuropathological changes, supporting the
al., 2003). Importantly, these investigators also demon- notion that PD-causing mutations operate via a toxic
strated that there is an accumulation of cyclin E in mid- gain-of-function mechanism. However, a striking disap-
brain extracts from parkin mutant as well as idiopathic pointment of the �-synuclein transgenic mice has been
PD and that in excitotoxin-treated cultured postmitotic a complete failure to model dopaminergic neurodegen-
neurons parkin overexpression attenuates cyclin E ac- eration (i.e., actual cell death). Instead, these mice dis-
cumulation and promotes survival. Thus, a number of play a variety of neuropathologic changes, including
findings are beginning to strengthen the functional links

neuronal atrophy, dystrophic neurites, and astrocytosis
between parkin, synuclein, and proteasome function as

accompanied by �-synuclein-positive LB-like inclusions.
well as to highlight parkin substrates that might play a

Indeed, compared to other neuronal populations, murine
key role in cell death. However, none of the identified

dopaminergic neurons appear inexplicably resistant toparkin substrates normally display a pattern of selective
�-synuclein-induced neurotoxicity, even in the face ofor enriched expression in dopaminergic neurons. Thus,
marked accumulations of the protein (Matsuoka et al.,these data have yet to suggest a molecular explanation
2001; Giasson et al., 2002; Lee et al., 2002b), significantlyfor the relative specificity of dopaminergic neuron de-
limiting the utility of these models.generation in PD.

In contrast to the transgenic mouse studies, twoUbiquitin C-Terminal Hydrolase-L1
groups have demonstrated that the injection of humanA dominant mutation (I93M) in UCH-L1 was identified
�-synuclein expressing viral vectors into the substantiain one family with inherited PD (Leroy et al., 1998), but
nigra of adult rats causes the selective death of dopa-no pathological data were included in this report. This
minergic neurons accompanied by synuclein-containingenzyme catalyzes the hydrolysis of C-terminal ubiquityl
inclusions and other pathologic changes reminiscent ofesters and is thought to play a role in recycling ubiquitin
those observed in PD (Kirik et al., 2002; Lo Bianco etligated to misfolded proteins after their degradation by
al., 2002). The reasons for the discrepancy between thethe proteasome (reviewed by Wilkinson, 2000). Although
rat and mouse studies are not clear. Significantly higherthe I93M mutation decreases the activity of this deubi-
levels of �-synuclein expression may be achieved withquitinating enzyme, mice null for UCH-L1 do not display
the viral vectors, or it may be important that, in contrastdopaminergic neurodegeneration (Saigoh et al., 1999).
to transgenic mice, in these models �-synuclein is sud-Rather, they develop an axonopathy affecting primary
denly overexpressed during adulthood. It is also possi-sensory axons in the gracile nucleus of the medulla,
ble that a species-dependent difference in susceptibilitywhose cell bodies reside in the dorsal root ganglia (Sai-
to �-synuclein toxicity exists between mice and rats.goh et al., 1999). Additionally, a polymorphism (S18Y)
While the viral vector approach will be useful for certainof UCH-L1 appears to be protective for the development
studies, it has significant limitations. Most importantly,of PD (Maraganore et al., 1999; Levecque et al., 2001;
because the investigator must generate each individualSatoh and Kuroda, 2001). Aside from its deubiquitinating
animal, it is technically challenging to produce largefunction, UCH-L1 exerts a previously unrecognized ubi-

quitin ligase activity upon dimerization (Liu et al., 2002). cohorts of rats that express similar amounts of protein in
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a consistent anatomic pattern. Thus, unlike the situation aspect of this work should be to clarify primary initiating
events from those that may be a nonspecific conse-with heritable transgenes, each rat is in effect an inde-

pendent experiment. Furthermore, this approach does quence of neuronal demise. While the identification of
PD genes has also allowed the generation of etiologic-not allow investigators to take advantage of the large

number of mouse mutants or genetic strategies avail- specific PD animal models, none of these models mani-
fests the crucial feature of the disease: relatively selec-able in mice that would greatly facilitate the further as-

sessment of the molecular mechanisms of this sy- tive degeneration of dopaminergic neurons. This is a
vital future goal, as it would enable investigators to ex-nuclein-dependent dopaminergic neurodegeneration.

Overexpression of either wild-type or mutant �-synuclein plore the unique features of dopaminergic neurons that
make them preferentially susceptible to neurodegenera-in Drosophila leads to LB-like synuclein-containing inclu-

sions and loss of dopaminergic neurons, as well as a tion in PD as well as to test novel therapies.
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